--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: LLMBook_distilbert-base-uncased-finetuned-emotion results: [] datasets: - dair-ai/emotion --- # LLMBook_distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on [Emotion Dataset](https://github.com/dair-ai/emotion_dataset). It achieves the following results on the evaluation set: - Loss: 0.2171 - Accuracy: 0.928 - F1: 0.9279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8356 | 1.0 | 250 | 0.3062 | 0.9115 | 0.9104 | | 0.2527 | 2.0 | 500 | 0.2171 | 0.928 | 0.9279 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.3.0+cpu - Datasets 3.2.0 - Tokenizers 0.20.3