--- license: cc-by-nc-2.0 # 或者你选择的许可证,例如 mit, cc-by-sa-4.0 等 tags: - scene-text-synthesis - multilingual - diffusion - dit - ocr-free - textflux - flux # 如果你的模型基于FLUX # - text-to-image # 这是一个通用的计算机视觉标签 # - generated_image_text # 更具体的标签 library_name: diffusers # 因为你提到了 Diffusers pipeline_tag: text-to-image # 或者更具体的任务标签 base_model: - black-forest-labs/FLUX.1-Fill-dev # datasets: # 如果你愿意,可以列出主要的训练数据集,即使它们尚未公开发布 # - your-custom-training-dataset-name # metrics: # 如果你有评估指标 # - fid # - ocr_accuracy # model-index: # 这部分帮助Hugging Face更好地索引模型和其结果 # - name: TextFlux # 你的模型名称 # results: # - task: # type: text-to-image # 任务类型 # name: Scene Text Synthesis # 任务的具体名称 # dataset: # 评估用的数据集 # name: your-evaluation-dataset # type: scene_text_images # metrics: # 评估指标 # - name: OCR Accuracy # value: 90.5 # 举例 # type: ocr_accuracy # - name: FID # value: 30.2 # 举例 # type: fid --- # TextFlux: An OCR-Free DiT Model for High-Fidelity Multilingual Scene Text Synthesis
**TextFlux** is an **OCR-free framework** using a Diffusion Transformer (DiT, based on [FLUX.1-Fill-dev](https://github.com/black-forest-labs/flux)) for high-fidelity multilingual scene text synthesis. It simplifies the learning task by providing direct visual glyph guidance through spatial concatenation of rendered glyphs with the scene image, enabling the model to focus on contextual reasoning and visual fusion. ## Key Features * **OCR-Free:** Simplified architecture without OCR encoders. * **High-Fidelity & Contextual Styles:** Precise rendering, stylistically consistent with scenes. * **Multilingual & Low-Resource:** Strong performance across languages, adapts to new languages with minimal data (e.g., <1,000 samples). * **Zero-Shot Generalization:** Renders characters unseen during training. * **Controllable Multi-Line Text:** Flexible multi-line synthesis with line-level control. * **Data Efficient:** Uses a fraction of data (e.g., ~1%) compared to other methods.