File size: 59,946 Bytes
5cd7b03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
---

tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1000000
- loss:TripletLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: '|Evaluation procedure (procedure)| : { |Method (attribute)| =

    |Evaluation - action (qualifier value)|, |Has specimen (attribute)| = |Urine specimen

    (specimen)| }'
  sentences:
  - Evaluation of urine specimen (procedure)
  - Tacrolimus-containing product in oral dose form (medicinal product form)
  - '|Measurement of substance in specimen (procedure)| + |Organic acids measurement

    (procedure)| : { |Method (attribute)| = |Measurement - action (qualifier value)|,

    |Component (attribute)| = |Organic acid (substance)|, |Has specimen (attribute)|

    = |Fluid specimen (specimen)| }'
- source_sentence: Allergy to meclozine (finding)
  sentences:
  - Meclizine allergy (finding)
  - Allergy to quinidine (finding)
  - Disorder of ovary (disorder)
- source_sentence: '|Specimen observable (observable entity)|'
  sentences:
  - Carbamide peroxide (product)
  - Neoplasm of uncertain behavior of dome of urinary bladder (disorder)
  - Microscopic specimen observable (observable entity)
- source_sentence: '|Dilation of esophagus (procedure)| : { |Method (attribute)| =

    |Dilation - action (qualifier value)|, |Procedure site - Direct (attribute)| =

    |Esophageal structure (body structure)|, |Direct morphology (attribute)| = |Stricture

    (morphologic abnormality)| }'
  sentences:
  - Fissure for ligamentum teres of liver (body structure)
  - Dilatation of esophageal stricture (procedure)
  - Dilation and insertion of tube into esophagus (procedure)
- source_sentence: '|Estradiol and/or estradiol derivative (substance)| + |Steroid

    hormone (substance)| + |Substance with estrogen receptor agonist mechanism of

    action (substance)| : |Has disposition (attribute)| = |Estrogen receptor agonist

    (disposition)|, '
  sentences:
  - Oral form dioctahedral smectite (medicinal product form)
  - 17-Beta oestradiol (substance)
  - Rupture of Descemet's membrane of right eye (disorder)
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: snomed triplet 1M 3 4 3 dev
      type: snomed_triplet_1M_3_4_3-dev
    metrics:
    - type: cosine_accuracy
      value: 0.979325
      name: Cosine Accuracy
    - type: cosine_accuracy
      value: 0.9780125
      name: Cosine Accuracy
---


# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the parquet dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - parquet
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 

  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

  (2): Normalize()

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("yyzheng00/snomed_triplet_1M")

# Run inference

sentences = [

    '|Estradiol and/or estradiol derivative (substance)| + |Steroid hormone (substance)| + |Substance with estrogen receptor agonist mechanism of action (substance)| : |Has disposition (attribute)| = |Estrogen receptor agonist (disposition)|, ',

    '17-Beta oestradiol (substance)',

    "Rupture of Descemet's membrane of right eye (disorder)",

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 384]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet

* Dataset: `snomed_triplet_1M_3_4_3-dev`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.9793** |



#### Triplet



* Dataset: `snomed_triplet_1M_3_4_3-dev`

* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)



| Metric              | Value     |

|:--------------------|:----------|

| **cosine_accuracy** | **0.978** |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### parquet



* Dataset: parquet

* Size: 1,000,000 training samples

* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>

* Approximate statistics based on the first 1000 samples:

  |         | anchor                                                                             | positive                                                                          | negative                                                                           |

  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|

  | type    | string                                                                             | string                                                                            | string                                                                             |

  | details | <ul><li>min: 7 tokens</li><li>mean: 50.47 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.36 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 22.41 tokens</li><li>max: 256 tokens</li></ul> |

* Samples:

  | anchor                                                                                                                                                                                                                                                                                                                                                                                                                                          | positive                                                                     | negative                                                                             |

  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|

  | <code>Anas versicolor (organism)</code>                                                                                                                                                                                                                                                                                                                                                                                                         | <code>Silver teal (organism)</code>                                          | <code>Cryotherapy of gastric lesion (procedure)</code>                               |

  | <code>|Vitamin B2 and/or vitamin B2 derivative (substance)| : |Is modification of (attribute)| = |Riboflavin (substance)|, </code>                                                                                                                                                                                                                                                                                                              | <code>Riboflavin sodium phosphate (substance)</code>                         | <code>Nicotinic acid (substance)</code>                                              |

  | <code>|Aplasia of distal phalanx of fifth toe (disorder)| + |Disorder of epiphysis (disorder)| : { |Occurrence (attribute)| = |Congenital (qualifier value)|, |Finding site (attribute)| = |Entire epiphysis of distal phalanx of fifth toe (body structure)|, |Associated morphology (attribute)| = |Agenesis (morphologic abnormality)|, |Pathological process (attribute)| = |Pathological developmental process (qualifier value)| }</code> | <code>Agenesis of epiphysis of distal phalanx of fifth toe (disorder)</code> | <code>Product containing mianserin in oral dose form (medicinal product form)</code> |

* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:

  ```json

  {

      "distance_metric": "TripletDistanceMetric.COSINE",
      "triplet_margin": 0.2

  }

  ```


### Evaluation Dataset

#### parquet

* Dataset: parquet
* Size: 1,000,000 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                             | positive                                                                          | negative                                                                           |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | string                                                                             |
  | details | <ul><li>min: 6 tokens</li><li>mean: 48.58 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.51 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 20.96 tokens</li><li>max: 256 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | positive                                                                   | negative                                                                                                                                                     |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>|Genus Roseateles (organism)|</code>                                                                                                                                                                                                                                                                                                                                                                                                                                             | <code>Pelomonas saccharophila (organism)</code>                            | <code>|Mycology culture (procedure)|:{|Component (attribute)|=|Pichia manshurica (organism)|}{|Has specimen (attribute)|=|Fluid specimen (specimen)|}</code> |
  | <code>|Partial urinary cystectomy (procedure)| + |Procedure on neck of urinary bladder (procedure)| + |Surgical procedure on outlet of urinary bladder (procedure)| + |Transurethral excision of urinary bladder (procedure)| : { |Surgical approach (attribute)| = |Transurethral approach (qualifier value)|, |Method (attribute)| = |Excision - action (qualifier value)|, |Procedure site - Direct (attribute)| = |Structure of neck of urinary bladder (body structure)| }</code> | <code>Transurethral excision of neck of urinary bladder (procedure)</code> | <code>Paracentesis of urinary bladder (procedure)</code>                                                                                                     |
  | <code>|Product containing integrase strand transfer inhibitor (product)| + |Product containing nitrogen and/or nitrogen compound (product)| : { |Has active ingredient (attribute)| = |Dolutegravir (substance)| }</code>                                                                                                                                                                                                                                                              | <code>Dolutegravir (product)</code>                                        | <code>Product containing ammonium bicarbonate (medicinal product)</code>                                                                                     |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
  ```json

  {

      "distance_metric": "TripletDistanceMetric.COSINE",

      "triplet_margin": 0.2

  }

  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step  | Training Loss | Validation Loss | snomed_triplet_1M_3_4_3-dev_cosine_accuracy |

|:------:|:-----:|:-------------:|:---------------:|:-------------------------------------------:|

| 0.0027 | 100   | 0.0553        | 0.0405          | 0.9199                                      |

| 0.0053 | 200   | 0.0412        | 0.0316          | 0.9369                                      |

| 0.008  | 300   | 0.0277        | 0.0296          | 0.9405                                      |

| 0.0107 | 400   | 0.0303        | 0.0282          | 0.9433                                      |

| 0.0133 | 500   | 0.0262        | 0.0275          | 0.9450                                      |

| 0.016  | 600   | 0.0293        | 0.0266          | 0.9466                                      |

| 0.0187 | 700   | 0.0301        | 0.0257          | 0.9480                                      |

| 0.0213 | 800   | 0.0262        | 0.0249          | 0.9506                                      |

| 0.024  | 900   | 0.0258        | 0.0240          | 0.9527                                      |

| 0.0267 | 1000  | 0.0286        | 0.0235          | 0.9537                                      |

| 0.0293 | 1100  | 0.0239        | 0.0229          | 0.9547                                      |

| 0.032  | 1200  | 0.0211        | 0.0231          | 0.9548                                      |

| 0.0347 | 1300  | 0.0235        | 0.0228          | 0.9555                                      |

| 0.0373 | 1400  | 0.0257        | 0.0225          | 0.9559                                      |

| 0.04   | 1500  | 0.025         | 0.0217          | 0.9572                                      |

| 0.0427 | 1600  | 0.0216        | 0.0214          | 0.9581                                      |

| 0.0453 | 1700  | 0.0247        | 0.0214          | 0.9580                                      |

| 0.048  | 1800  | 0.0229        | 0.0212          | 0.9588                                      |

| 0.0507 | 1900  | 0.0207        | 0.0211          | 0.9585                                      |

| 0.0533 | 2000  | 0.0224        | 0.0214          | 0.9585                                      |

| 0.056  | 2100  | 0.0237        | 0.0209          | 0.9587                                      |

| 0.0587 | 2200  | 0.0205        | 0.0205          | 0.9591                                      |

| 0.0613 | 2300  | 0.0218        | 0.0208          | 0.9590                                      |

| 0.064  | 2400  | 0.0209        | 0.0204          | 0.9601                                      |

| 0.0667 | 2500  | 0.0225        | 0.0207          | 0.9591                                      |

| 0.0693 | 2600  | 0.021         | 0.0206          | 0.9604                                      |

| 0.072  | 2700  | 0.0222        | 0.0197          | 0.9622                                      |

| 0.0747 | 2800  | 0.0214        | 0.0198          | 0.9615                                      |

| 0.0773 | 2900  | 0.0204        | 0.0200          | 0.9611                                      |

| 0.08   | 3000  | 0.026         | 0.0197          | 0.9622                                      |

| 0.0827 | 3100  | 0.0181        | 0.0197          | 0.9617                                      |

| 0.0853 | 3200  | 0.023         | 0.0195          | 0.9612                                      |

| 0.088  | 3300  | 0.0198        | 0.0195          | 0.9620                                      |

| 0.0907 | 3400  | 0.0205        | 0.0198          | 0.9611                                      |

| 0.0933 | 3500  | 0.0208        | 0.0194          | 0.9622                                      |

| 0.096  | 3600  | 0.0205        | 0.0205          | 0.9592                                      |

| 0.0987 | 3700  | 0.0242        | 0.0196          | 0.9619                                      |

| 0.1013 | 3800  | 0.0178        | 0.0191          | 0.9634                                      |

| 0.104  | 3900  | 0.0189        | 0.0189          | 0.9629                                      |

| 0.1067 | 4000  | 0.0249        | 0.0188          | 0.9637                                      |

| 0.1093 | 4100  | 0.0201        | 0.0186          | 0.9634                                      |

| 0.112  | 4200  | 0.0198        | 0.0185          | 0.9636                                      |

| 0.1147 | 4300  | 0.0208        | 0.0186          | 0.9639                                      |

| 0.1173 | 4400  | 0.019         | 0.0185          | 0.9639                                      |

| 0.12   | 4500  | 0.0203        | 0.0188          | 0.9638                                      |

| 0.1227 | 4600  | 0.0205        | 0.0191          | 0.9633                                      |

| 0.1253 | 4700  | 0.0183        | 0.0194          | 0.9623                                      |

| 0.128  | 4800  | 0.022         | 0.0183          | 0.9643                                      |

| 0.1307 | 4900  | 0.0193        | 0.0182          | 0.9649                                      |

| 0.1333 | 5000  | 0.0192        | 0.0178          | 0.9659                                      |

| 0.136  | 5100  | 0.0212        | 0.0185          | 0.9650                                      |

| 0.1387 | 5200  | 0.0181        | 0.0183          | 0.9639                                      |

| 0.1413 | 5300  | 0.0189        | 0.0177          | 0.9656                                      |

| 0.144  | 5400  | 0.0209        | 0.0179          | 0.9658                                      |

| 0.1467 | 5500  | 0.0216        | 0.0175          | 0.9665                                      |

| 0.1493 | 5600  | 0.0178        | 0.0176          | 0.9665                                      |

| 0.152  | 5700  | 0.019         | 0.0178          | 0.9658                                      |

| 0.1547 | 5800  | 0.0215        | 0.0180          | 0.9655                                      |

| 0.1573 | 5900  | 0.0194        | 0.0176          | 0.9663                                      |

| 0.16   | 6000  | 0.0182        | 0.0181          | 0.9651                                      |

| 0.1627 | 6100  | 0.0186        | 0.0185          | 0.9640                                      |

| 0.1653 | 6200  | 0.019         | 0.0178          | 0.9650                                      |

| 0.168  | 6300  | 0.019         | 0.0172          | 0.9667                                      |

| 0.1707 | 6400  | 0.0186        | 0.0178          | 0.9654                                      |

| 0.1733 | 6500  | 0.0192        | 0.0172          | 0.9669                                      |

| 0.176  | 6600  | 0.0185        | 0.0171          | 0.9670                                      |

| 0.1787 | 6700  | 0.019         | 0.0169          | 0.9674                                      |

| 0.1813 | 6800  | 0.0183        | 0.0170          | 0.9671                                      |

| 0.184  | 6900  | 0.0199        | 0.0168          | 0.9675                                      |

| 0.1867 | 7000  | 0.0186        | 0.0169          | 0.9673                                      |

| 0.1893 | 7100  | 0.016         | 0.0169          | 0.9676                                      |

| 0.192  | 7200  | 0.0158        | 0.0174          | 0.9663                                      |

| 0.1947 | 7300  | 0.0205        | 0.0169          | 0.9681                                      |

| 0.1973 | 7400  | 0.0189        | 0.0169          | 0.9669                                      |

| 0.2    | 7500  | 0.0188        | 0.0170          | 0.9672                                      |

| 0.2027 | 7600  | 0.0193        | 0.0168          | 0.9674                                      |

| 0.2053 | 7700  | 0.0202        | 0.0168          | 0.9673                                      |

| 0.208  | 7800  | 0.0184        | 0.0165          | 0.9676                                      |

| 0.2107 | 7900  | 0.0196        | 0.0162          | 0.9687                                      |

| 0.2133 | 8000  | 0.0186        | 0.0161          | 0.9688                                      |

| 0.216  | 8100  | 0.0174        | 0.0166          | 0.9670                                      |

| 0.2187 | 8200  | 0.0178        | 0.0166          | 0.9676                                      |

| 0.2213 | 8300  | 0.0187        | 0.0172          | 0.9664                                      |

| 0.224  | 8400  | 0.0175        | 0.0162          | 0.9685                                      |

| 0.2267 | 8500  | 0.0165        | 0.0163          | 0.9674                                      |

| 0.2293 | 8600  | 0.018         | 0.0164          | 0.9678                                      |

| 0.232  | 8700  | 0.0192        | 0.0165          | 0.9680                                      |

| 0.2347 | 8800  | 0.0182        | 0.0164          | 0.9680                                      |

| 0.2373 | 8900  | 0.0191        | 0.0162          | 0.9689                                      |

| 0.24   | 9000  | 0.0173        | 0.0161          | 0.9683                                      |

| 0.2427 | 9100  | 0.022         | 0.0159          | 0.9685                                      |

| 0.2453 | 9200  | 0.0182        | 0.0161          | 0.9685                                      |

| 0.248  | 9300  | 0.0174        | 0.0165          | 0.9684                                      |

| 0.2507 | 9400  | 0.0181        | 0.0168          | 0.9667                                      |

| 0.2533 | 9500  | 0.0159        | 0.0163          | 0.9684                                      |

| 0.256  | 9600  | 0.0176        | 0.0162          | 0.9685                                      |

| 0.2587 | 9700  | 0.0155        | 0.0170          | 0.9668                                      |

| 0.2613 | 9800  | 0.0183        | 0.0162          | 0.9679                                      |

| 0.264  | 9900  | 0.0183        | 0.0156          | 0.9693                                      |

| 0.2667 | 10000 | 0.019         | 0.0156          | 0.9695                                      |

| 0.2693 | 10100 | 0.0167        | 0.0162          | 0.9683                                      |

| 0.272  | 10200 | 0.0202        | 0.0156          | 0.9695                                      |

| 0.2747 | 10300 | 0.0174        | 0.0157          | 0.9694                                      |

| 0.2773 | 10400 | 0.0165        | 0.0155          | 0.9694                                      |

| 0.28   | 10500 | 0.0176        | 0.0155          | 0.9700                                      |

| 0.2827 | 10600 | 0.0181        | 0.0153          | 0.9699                                      |

| 0.2853 | 10700 | 0.0184        | 0.0154          | 0.9697                                      |

| 0.288  | 10800 | 0.0172        | 0.0155          | 0.9692                                      |

| 0.2907 | 10900 | 0.0153        | 0.0156          | 0.9694                                      |

| 0.2933 | 11000 | 0.0169        | 0.0154          | 0.9700                                      |

| 0.296  | 11100 | 0.0181        | 0.0153          | 0.9698                                      |

| 0.2987 | 11200 | 0.0164        | 0.0154          | 0.9700                                      |

| 0.3013 | 11300 | 0.0177        | 0.0158          | 0.9691                                      |

| 0.304  | 11400 | 0.0154        | 0.0153          | 0.9700                                      |

| 0.3067 | 11500 | 0.0159        | 0.0153          | 0.9700                                      |

| 0.3093 | 11600 | 0.0162        | 0.0152          | 0.9699                                      |

| 0.312  | 11700 | 0.0172        | 0.0150          | 0.9710                                      |

| 0.3147 | 11800 | 0.0151        | 0.0153          | 0.9696                                      |

| 0.3173 | 11900 | 0.0157        | 0.0153          | 0.9697                                      |

| 0.32   | 12000 | 0.0145        | 0.0150          | 0.9705                                      |

| 0.3227 | 12100 | 0.0184        | 0.0153          | 0.9701                                      |

| 0.3253 | 12200 | 0.0173        | 0.0151          | 0.9706                                      |

| 0.328  | 12300 | 0.0158        | 0.0151          | 0.971                                       |

| 0.3307 | 12400 | 0.0154        | 0.0154          | 0.9697                                      |

| 0.3333 | 12500 | 0.0126        | 0.0153          | 0.9697                                      |

| 0.336  | 12600 | 0.0151        | 0.0150          | 0.9704                                      |

| 0.3387 | 12700 | 0.0152        | 0.0152          | 0.9698                                      |

| 0.3413 | 12800 | 0.0176        | 0.0150          | 0.9707                                      |

| 0.344  | 12900 | 0.0172        | 0.0149          | 0.9705                                      |

| 0.3467 | 13000 | 0.0149        | 0.0151          | 0.9704                                      |

| 0.3493 | 13100 | 0.0154        | 0.0151          | 0.9701                                      |

| 0.352  | 13200 | 0.0138        | 0.0148          | 0.9705                                      |

| 0.3547 | 13300 | 0.0195        | 0.0149          | 0.9705                                      |

| 0.3573 | 13400 | 0.0162        | 0.0151          | 0.9707                                      |

| 0.36   | 13500 | 0.0137        | 0.0150          | 0.9708                                      |

| 0.3627 | 13600 | 0.0153        | 0.0151          | 0.9704                                      |

| 0.3653 | 13700 | 0.0143        | 0.0150          | 0.9705                                      |

| 0.368  | 13800 | 0.0161        | 0.0149          | 0.9709                                      |

| 0.3707 | 13900 | 0.0136        | 0.0149          | 0.9712                                      |

| 0.3733 | 14000 | 0.0161        | 0.0150          | 0.9709                                      |

| 0.376  | 14100 | 0.0171        | 0.0148          | 0.9718                                      |

| 0.3787 | 14200 | 0.0168        | 0.0147          | 0.9717                                      |

| 0.3813 | 14300 | 0.0159        | 0.0147          | 0.9718                                      |

| 0.384  | 14400 | 0.0167        | 0.0145          | 0.9721                                      |

| 0.3867 | 14500 | 0.0158        | 0.0147          | 0.9715                                      |

| 0.3893 | 14600 | 0.0153        | 0.0146          | 0.9713                                      |

| 0.392  | 14700 | 0.0131        | 0.0145          | 0.9717                                      |

| 0.3947 | 14800 | 0.0166        | 0.0144          | 0.9722                                      |

| 0.3973 | 14900 | 0.0164        | 0.0142          | 0.9720                                      |

| 0.4    | 15000 | 0.0166        | 0.0143          | 0.9720                                      |

| 0.4027 | 15100 | 0.0168        | 0.0143          | 0.9726                                      |

| 0.4053 | 15200 | 0.0145        | 0.0143          | 0.9723                                      |

| 0.408  | 15300 | 0.0149        | 0.0144          | 0.9717                                      |

| 0.4107 | 15400 | 0.0152        | 0.0141          | 0.9729                                      |

| 0.4133 | 15500 | 0.0147        | 0.0140          | 0.9734                                      |

| 0.416  | 15600 | 0.0141        | 0.0140          | 0.9731                                      |

| 0.4187 | 15700 | 0.0147        | 0.0140          | 0.9731                                      |

| 0.4213 | 15800 | 0.0158        | 0.0139          | 0.9734                                      |

| 0.424  | 15900 | 0.0177        | 0.0141          | 0.9728                                      |

| 0.4267 | 16000 | 0.0151        | 0.0137          | 0.9734                                      |

| 0.4293 | 16100 | 0.0148        | 0.0145          | 0.9724                                      |

| 0.432  | 16200 | 0.0135        | 0.0144          | 0.9721                                      |

| 0.4347 | 16300 | 0.0167        | 0.0138          | 0.9736                                      |

| 0.4373 | 16400 | 0.0153        | 0.0138          | 0.9739                                      |

| 0.44   | 16500 | 0.014         | 0.0139          | 0.9731                                      |

| 0.4427 | 16600 | 0.0168        | 0.0139          | 0.9734                                      |

| 0.4453 | 16700 | 0.0125        | 0.0139          | 0.9734                                      |

| 0.448  | 16800 | 0.0163        | 0.0139          | 0.9733                                      |

| 0.4507 | 16900 | 0.0179        | 0.0137          | 0.9742                                      |

| 0.4533 | 17000 | 0.0162        | 0.0136          | 0.9738                                      |

| 0.456  | 17100 | 0.0148        | 0.0137          | 0.9734                                      |

| 0.4587 | 17200 | 0.0154        | 0.0137          | 0.9737                                      |

| 0.4613 | 17300 | 0.0178        | 0.0139          | 0.9732                                      |

| 0.464  | 17400 | 0.0176        | 0.0138          | 0.9731                                      |

| 0.4667 | 17500 | 0.012         | 0.0135          | 0.9738                                      |

| 0.4693 | 17600 | 0.0136        | 0.0137          | 0.9731                                      |

| 0.472  | 17700 | 0.0156        | 0.0133          | 0.9740                                      |

| 0.4747 | 17800 | 0.0151        | 0.0136          | 0.9738                                      |

| 0.4773 | 17900 | 0.0145        | 0.0135          | 0.9741                                      |

| 0.48   | 18000 | 0.0176        | 0.0136          | 0.9735                                      |

| 0.4827 | 18100 | 0.0143        | 0.0133          | 0.9744                                      |

| 0.4853 | 18200 | 0.0144        | 0.0133          | 0.9742                                      |

| 0.488  | 18300 | 0.0139        | 0.0135          | 0.9738                                      |

| 0.4907 | 18400 | 0.0134        | 0.0134          | 0.9740                                      |

| 0.4933 | 18500 | 0.0135        | 0.0134          | 0.9738                                      |

| 0.496  | 18600 | 0.0144        | 0.0134          | 0.9738                                      |

| 0.4987 | 18700 | 0.0143        | 0.0135          | 0.9744                                      |

| 0.5013 | 18800 | 0.0165        | 0.0133          | 0.9748                                      |

| 0.504  | 18900 | 0.0147        | 0.0133          | 0.9742                                      |

| 0.5067 | 19000 | 0.0159        | 0.0133          | 0.9743                                      |

| 0.5093 | 19100 | 0.013         | 0.0132          | 0.9746                                      |

| 0.512  | 19200 | 0.0145        | 0.0133          | 0.9744                                      |

| 0.5147 | 19300 | 0.0147        | 0.0134          | 0.9743                                      |

| 0.5173 | 19400 | 0.0151        | 0.0131          | 0.9748                                      |

| 0.52   | 19500 | 0.0134        | 0.0132          | 0.9742                                      |

| 0.5227 | 19600 | 0.0148        | 0.0135          | 0.9740                                      |

| 0.5253 | 19700 | 0.0142        | 0.0134          | 0.9744                                      |

| 0.528  | 19800 | 0.0158        | 0.0132          | 0.9746                                      |

| 0.5307 | 19900 | 0.015         | 0.0134          | 0.9748                                      |

| 0.5333 | 20000 | 0.0146        | 0.0132          | 0.9745                                      |

| 0.536  | 20100 | 0.0136        | 0.0130          | 0.9752                                      |

| 0.5387 | 20200 | 0.0142        | 0.0131          | 0.9750                                      |

| 0.5413 | 20300 | 0.0137        | 0.0130          | 0.9749                                      |

| 0.544  | 20400 | 0.0118        | 0.0132          | 0.9741                                      |

| 0.5467 | 20500 | 0.0129        | 0.0131          | 0.9750                                      |

| 0.5493 | 20600 | 0.015         | 0.0131          | 0.9749                                      |

| 0.552  | 20700 | 0.0154        | 0.0132          | 0.9743                                      |

| 0.5547 | 20800 | 0.0165        | 0.0132          | 0.9747                                      |

| 0.5573 | 20900 | 0.0158        | 0.0131          | 0.9751                                      |

| 0.56   | 21000 | 0.014         | 0.0130          | 0.9746                                      |

| 0.5627 | 21100 | 0.0157        | 0.0129          | 0.9755                                      |

| 0.5653 | 21200 | 0.014         | 0.0129          | 0.9754                                      |

| 0.568  | 21300 | 0.0149        | 0.0129          | 0.9751                                      |

| 0.5707 | 21400 | 0.0114        | 0.0129          | 0.9754                                      |

| 0.5733 | 21500 | 0.0116        | 0.0128          | 0.9755                                      |

| 0.576  | 21600 | 0.0114        | 0.0132          | 0.9743                                      |

| 0.5787 | 21700 | 0.0164        | 0.0127          | 0.9759                                      |

| 0.5813 | 21800 | 0.0137        | 0.0127          | 0.9754                                      |

| 0.584  | 21900 | 0.0118        | 0.0129          | 0.9745                                      |

| 0.5867 | 22000 | 0.0126        | 0.0129          | 0.9752                                      |

| 0.5893 | 22100 | 0.0153        | 0.0126          | 0.9758                                      |

| 0.592  | 22200 | 0.0128        | 0.0126          | 0.9759                                      |

| 0.5947 | 22300 | 0.0161        | 0.0128          | 0.9755                                      |

| 0.5973 | 22400 | 0.0121        | 0.0128          | 0.9754                                      |

| 0.6    | 22500 | 0.0144        | 0.0126          | 0.9758                                      |

| 0.6027 | 22600 | 0.0138        | 0.0127          | 0.9754                                      |

| 0.6053 | 22700 | 0.0114        | 0.0125          | 0.9757                                      |

| 0.608  | 22800 | 0.0163        | 0.0126          | 0.9755                                      |

| 0.6107 | 22900 | 0.0127        | 0.0125          | 0.9757                                      |

| 0.6133 | 23000 | 0.0139        | 0.0126          | 0.9752                                      |

| 0.616  | 23100 | 0.015         | 0.0126          | 0.9754                                      |

| 0.6187 | 23200 | 0.0128        | 0.0124          | 0.9759                                      |

| 0.6213 | 23300 | 0.0127        | 0.0126          | 0.9758                                      |

| 0.624  | 23400 | 0.0137        | 0.0126          | 0.9755                                      |

| 0.6267 | 23500 | 0.0171        | 0.0125          | 0.9760                                      |

| 0.6293 | 23600 | 0.0154        | 0.0123          | 0.9761                                      |

| 0.632  | 23700 | 0.0133        | 0.0125          | 0.9757                                      |

| 0.6347 | 23800 | 0.0147        | 0.0122          | 0.9762                                      |

| 0.6373 | 23900 | 0.012         | 0.0123          | 0.9759                                      |

| 0.64   | 24000 | 0.0121        | 0.0124          | 0.9762                                      |

| 0.6427 | 24100 | 0.0156        | 0.0122          | 0.9768                                      |

| 0.6453 | 24200 | 0.0135        | 0.0122          | 0.9763                                      |

| 0.648  | 24300 | 0.0111        | 0.0123          | 0.9762                                      |

| 0.6507 | 24400 | 0.0131        | 0.0121          | 0.9766                                      |

| 0.6533 | 24500 | 0.0166        | 0.0120          | 0.9766                                      |

| 0.656  | 24600 | 0.0145        | 0.0121          | 0.9764                                      |

| 0.6587 | 24700 | 0.0138        | 0.0122          | 0.9763                                      |

| 0.6613 | 24800 | 0.0127        | 0.0120          | 0.9766                                      |

| 0.664  | 24900 | 0.0142        | 0.0120          | 0.9767                                      |

| 0.6667 | 25000 | 0.0119        | 0.0122          | 0.9764                                      |

| 0.6693 | 25100 | 0.0157        | 0.0120          | 0.9768                                      |

| 0.672  | 25200 | 0.0126        | 0.0119          | 0.9769                                      |

| 0.6747 | 25300 | 0.0113        | 0.0119          | 0.9772                                      |

| 0.6773 | 25400 | 0.0138        | 0.0121          | 0.9767                                      |

| 0.68   | 25500 | 0.0135        | 0.0124          | 0.9759                                      |

| 0.6827 | 25600 | 0.0147        | 0.0120          | 0.9765                                      |

| 0.6853 | 25700 | 0.0119        | 0.0120          | 0.9764                                      |

| 0.688  | 25800 | 0.0167        | 0.0120          | 0.9765                                      |

| 0.6907 | 25900 | 0.0132        | 0.0120          | 0.9767                                      |

| 0.6933 | 26000 | 0.0144        | 0.0118          | 0.9768                                      |

| 0.696  | 26100 | 0.0135        | 0.0118          | 0.9771                                      |

| 0.6987 | 26200 | 0.0156        | 0.0119          | 0.9769                                      |

| 0.7013 | 26300 | 0.0132        | 0.0119          | 0.9769                                      |

| 0.704  | 26400 | 0.0139        | 0.0120          | 0.9769                                      |

| 0.7067 | 26500 | 0.014         | 0.0118          | 0.9771                                      |

| 0.7093 | 26600 | 0.0133        | 0.0118          | 0.9770                                      |

| 0.712  | 26700 | 0.0142        | 0.0118          | 0.9773                                      |

| 0.7147 | 26800 | 0.0113        | 0.0117          | 0.977                                       |

| 0.7173 | 26900 | 0.0142        | 0.0117          | 0.977                                       |

| 0.72   | 27000 | 0.0112        | 0.0117          | 0.9771                                      |

| 0.7227 | 27100 | 0.012         | 0.0118          | 0.9768                                      |

| 0.7253 | 27200 | 0.0135        | 0.0117          | 0.9768                                      |

| 0.728  | 27300 | 0.0126        | 0.0116          | 0.9769                                      |

| 0.7307 | 27400 | 0.0136        | 0.0117          | 0.9767                                      |

| 0.7333 | 27500 | 0.013         | 0.0116          | 0.9770                                      |

| 0.736  | 27600 | 0.0131        | 0.0117          | 0.9767                                      |

| 0.7387 | 27700 | 0.0127        | 0.0116          | 0.9772                                      |

| 0.7413 | 27800 | 0.0124        | 0.0116          | 0.9770                                      |

| 0.744  | 27900 | 0.011         | 0.0116          | 0.9771                                      |

| 0.7467 | 28000 | 0.0159        | 0.0116          | 0.9770                                      |

| 0.7493 | 28100 | 0.0118        | 0.0116          | 0.9770                                      |

| 0.752  | 28200 | 0.0146        | 0.0115          | 0.9773                                      |

| 0.7547 | 28300 | 0.0112        | 0.0116          | 0.9772                                      |

| 0.7573 | 28400 | 0.0116        | 0.0115          | 0.9776                                      |

| 0.76   | 28500 | 0.0115        | 0.0115          | 0.9775                                      |

| 0.7627 | 28600 | 0.0137        | 0.0115          | 0.9779                                      |

| 0.7653 | 28700 | 0.0106        | 0.0115          | 0.9777                                      |

| 0.768  | 28800 | 0.011         | 0.0116          | 0.9774                                      |

| 0.7707 | 28900 | 0.0132        | 0.0115          | 0.9774                                      |

| 0.7733 | 29000 | 0.0119        | 0.0114          | 0.9776                                      |

| 0.776  | 29100 | 0.0121        | 0.0114          | 0.9779                                      |

| 0.7787 | 29200 | 0.0136        | 0.0113          | 0.9780                                      |

| 0.7813 | 29300 | 0.0114        | 0.0114          | 0.9779                                      |

| 0.784  | 29400 | 0.0122        | 0.0115          | 0.9778                                      |

| 0.7867 | 29500 | 0.0117        | 0.0114          | 0.9780                                      |

| 0.7893 | 29600 | 0.0119        | 0.0114          | 0.9778                                      |

| 0.792  | 29700 | 0.0145        | 0.0114          | 0.9778                                      |

| 0.7947 | 29800 | 0.0098        | 0.0113          | 0.9779                                      |

| 0.7973 | 29900 | 0.015         | 0.0114          | 0.9777                                      |

| 0.8    | 30000 | 0.0123        | 0.0113          | 0.9779                                      |

| 0.8027 | 30100 | 0.0111        | 0.0115          | 0.9774                                      |

| 0.8053 | 30200 | 0.0126        | 0.0114          | 0.9778                                      |

| 0.808  | 30300 | 0.0131        | 0.0113          | 0.9783                                      |

| 0.8107 | 30400 | 0.0131        | 0.0113          | 0.9784                                      |

| 0.8133 | 30500 | 0.0113        | 0.0113          | 0.9783                                      |

| 0.816  | 30600 | 0.0131        | 0.0113          | 0.9783                                      |

| 0.8187 | 30700 | 0.0137        | 0.0113          | 0.9782                                      |

| 0.8213 | 30800 | 0.0119        | 0.0112          | 0.9784                                      |

| 0.824  | 30900 | 0.0127        | 0.0113          | 0.9782                                      |

| 0.8267 | 31000 | 0.0114        | 0.0112          | 0.9787                                      |

| 0.8293 | 31100 | 0.0116        | 0.0111          | 0.9784                                      |

| 0.832  | 31200 | 0.0117        | 0.0112          | 0.9784                                      |

| 0.8347 | 31300 | 0.0128        | 0.0112          | 0.9782                                      |

| 0.8373 | 31400 | 0.0125        | 0.0112          | 0.9782                                      |

| 0.84   | 31500 | 0.0136        | 0.0111          | 0.9787                                      |

| 0.8427 | 31600 | 0.0121        | 0.0111          | 0.9785                                      |

| 0.8453 | 31700 | 0.0137        | 0.0112          | 0.9785                                      |

| 0.848  | 31800 | 0.0115        | 0.0111          | 0.9786                                      |

| 0.8507 | 31900 | 0.0111        | 0.0111          | 0.9784                                      |

| 0.8533 | 32000 | 0.012         | 0.0111          | 0.9786                                      |

| 0.856  | 32100 | 0.0115        | 0.0111          | 0.9787                                      |

| 0.8587 | 32200 | 0.0125        | 0.0111          | 0.9785                                      |

| 0.8613 | 32300 | 0.0111        | 0.0111          | 0.9788                                      |

| 0.864  | 32400 | 0.0127        | 0.0111          | 0.9788                                      |

| 0.8667 | 32500 | 0.0126        | 0.0110          | 0.9788                                      |

| 0.8693 | 32600 | 0.012         | 0.0111          | 0.9788                                      |

| 0.872  | 32700 | 0.0117        | 0.0111          | 0.9787                                      |

| 0.8747 | 32800 | 0.0136        | 0.0110          | 0.9787                                      |

| 0.8773 | 32900 | 0.0118        | 0.0110          | 0.9788                                      |

| 0.88   | 33000 | 0.015         | 0.0110          | 0.9789                                      |

| 0.8827 | 33100 | 0.0105        | 0.0110          | 0.9788                                      |

| 0.8853 | 33200 | 0.0135        | 0.0110          | 0.9786                                      |

| 0.888  | 33300 | 0.0099        | 0.0110          | 0.9790                                      |

| 0.8907 | 33400 | 0.013         | 0.0109          | 0.9787                                      |

| 0.8933 | 33500 | 0.0149        | 0.0109          | 0.9788                                      |

| 0.896  | 33600 | 0.012         | 0.0109          | 0.9789                                      |

| 0.8987 | 33700 | 0.01          | 0.0110          | 0.9788                                      |

| 0.9013 | 33800 | 0.0132        | 0.0110          | 0.9788                                      |

| 0.904  | 33900 | 0.0138        | 0.0109          | 0.9791                                      |

| 0.9067 | 34000 | 0.0107        | 0.0109          | 0.9789                                      |

| 0.9093 | 34100 | 0.0133        | 0.0109          | 0.9789                                      |

| 0.912  | 34200 | 0.0124        | 0.0109          | 0.9788                                      |

| 0.9147 | 34300 | 0.0119        | 0.0109          | 0.9788                                      |

| 0.9173 | 34400 | 0.0101        | 0.0109          | 0.9787                                      |

| 0.92   | 34500 | 0.0135        | 0.0109          | 0.9790                                      |

| 0.9227 | 34600 | 0.0116        | 0.0109          | 0.9789                                      |

| 0.9253 | 34700 | 0.0116        | 0.0109          | 0.9791                                      |

| 0.928  | 34800 | 0.0082        | 0.0108          | 0.9791                                      |

| 0.9307 | 34900 | 0.0129        | 0.0108          | 0.9791                                      |

| 0.9333 | 35000 | 0.0129        | 0.0108          | 0.9792                                      |

| 0.936  | 35100 | 0.0147        | 0.0108          | 0.9791                                      |

| 0.9387 | 35200 | 0.0112        | 0.0108          | 0.9790                                      |

| 0.9413 | 35300 | 0.0108        | 0.0108          | 0.9790                                      |

| 0.944  | 35400 | 0.0114        | 0.0108          | 0.9791                                      |

| 0.9467 | 35500 | 0.0096        | 0.0108          | 0.9792                                      |

| 0.9493 | 35600 | 0.0111        | 0.0108          | 0.9790                                      |

| 0.952  | 35700 | 0.0131        | 0.0108          | 0.9790                                      |

| 0.9547 | 35800 | 0.0147        | 0.0108          | 0.9792                                      |

| 0.9573 | 35900 | 0.0121        | 0.0108          | 0.9792                                      |

| 0.96   | 36000 | 0.0105        | 0.0108          | 0.9791                                      |

| 0.9627 | 36100 | 0.0081        | 0.0108          | 0.9791                                      |

| 0.9653 | 36200 | 0.013         | 0.0108          | 0.9791                                      |

| 0.968  | 36300 | 0.0121        | 0.0108          | 0.9792                                      |

| 0.9707 | 36400 | 0.0122        | 0.0108          | 0.9792                                      |

| 0.9733 | 36500 | 0.0121        | 0.0108          | 0.9792                                      |

| 0.976  | 36600 | 0.011         | 0.0108          | 0.9792                                      |

| 0.9787 | 36700 | 0.0109        | 0.0107          | 0.9792                                      |

| 0.9813 | 36800 | 0.0114        | 0.0107          | 0.9792                                      |

| 0.984  | 36900 | 0.0113        | 0.0107          | 0.9793                                      |

| 0.9867 | 37000 | 0.0111        | 0.0107          | 0.9794                                      |

| 0.9893 | 37100 | 0.0097        | 0.0107          | 0.9793                                      |

| 0.992  | 37200 | 0.0127        | 0.0107          | 0.9793                                      |

| 0.9947 | 37300 | 0.0143        | 0.0107          | 0.9794                                      |

| 0.9973 | 37400 | 0.0103        | 0.0107          | 0.9794                                      |

| 1.0    | 37500 | 0.014         | 0.0107          | 0.9780                                      |



</details>



### Framework Versions

- Python: 3.11.1

- Sentence Transformers: 3.3.1

- Transformers: 4.47.0

- PyTorch: 2.1.1+cu121

- Accelerate: 1.2.0

- Datasets: 2.18.0

- Tokenizers: 0.21.0



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### TripletLoss

```bibtex

@misc{hermans2017defense,

    title={In Defense of the Triplet Loss for Person Re-Identification},

    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},

    year={2017},

    eprint={1703.07737},

    archivePrefix={arXiv},

    primaryClass={cs.CV}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->