Initial commit: Zen Director based on Wan 2.2 TI2V-5B
Browse files
README.md
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- zh
|
6 |
+
pipeline_tag: text-to-video
|
7 |
+
tags:
|
8 |
+
- zen
|
9 |
+
- hanzo-ai
|
10 |
+
- video-generation
|
11 |
+
- text-to-video
|
12 |
+
- image-to-video
|
13 |
+
- wan2.2
|
14 |
+
- diffusion
|
15 |
+
base_model: Wan-AI/Wan2.2-TI2V-5B
|
16 |
+
---
|
17 |
+
|
18 |
+
# Zen Director
|
19 |
+
|
20 |
+
Video generation model based on Wan 2.2, specialized for text-to-video and image-to-video generation.
|
21 |
+
|
22 |
+
## Base Model
|
23 |
+
|
24 |
+
Built on **[Wan-AI/Wan2.2-TI2V-5B](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B)** - Text-to-Image-to-Video model with 5B parameters.
|
25 |
+
|
26 |
+
**Note:** This is based on Wan 2.2. Wan 2.5 is announced but not yet open-source. We will upgrade to Wan 2.5 when it becomes available.
|
27 |
+
|
28 |
+
## Capabilities
|
29 |
+
|
30 |
+
- **Text-to-Video**: Generate videos from text descriptions
|
31 |
+
- **Image-to-Video**: Animate static images into videos
|
32 |
+
- **High Resolution**: Supports high-quality video generation
|
33 |
+
- **Efficient**: Optimized MoE architecture for fast inference
|
34 |
+
|
35 |
+
## Model Details
|
36 |
+
|
37 |
+
- **Architecture**: Mixture-of-Experts (MoE) Transformer
|
38 |
+
- **Parameters**: 5B total
|
39 |
+
- **Base**: Wan 2.2 TI2V
|
40 |
+
- **Resolution**: Up to 1280x720
|
41 |
+
- **Frame Rate**: 24 FPS
|
42 |
+
- **Duration**: Up to 5 seconds
|
43 |
+
|
44 |
+
## Installation
|
45 |
+
|
46 |
+
```bash
|
47 |
+
pip install diffusers transformers accelerate torch
|
48 |
+
pip install av opencv-python pillow
|
49 |
+
```
|
50 |
+
|
51 |
+
## Usage
|
52 |
+
|
53 |
+
### Text-to-Video
|
54 |
+
|
55 |
+
```python
|
56 |
+
from diffusers import DiffusionPipeline
|
57 |
+
import torch
|
58 |
+
|
59 |
+
# Load the model
|
60 |
+
pipe = DiffusionPipeline.from_pretrained(
|
61 |
+
"zenlm/zen-director",
|
62 |
+
torch_dtype=torch.float16
|
63 |
+
)
|
64 |
+
pipe = pipe.to("cuda")
|
65 |
+
|
66 |
+
# Generate video from text
|
67 |
+
prompt = "A serene sunset over a calm ocean with waves gently lapping at the shore"
|
68 |
+
video = pipe(prompt, num_frames=120, height=720, width=1280).frames
|
69 |
+
|
70 |
+
# Save video
|
71 |
+
from diffusers.utils import export_to_video
|
72 |
+
export_to_video(video, "output.mp4", fps=24)
|
73 |
+
```
|
74 |
+
|
75 |
+
### Image-to-Video
|
76 |
+
|
77 |
+
```python
|
78 |
+
from PIL import Image
|
79 |
+
|
80 |
+
# Load starting image
|
81 |
+
image = Image.open("input.jpg")
|
82 |
+
|
83 |
+
# Generate video from image
|
84 |
+
video = pipe(
|
85 |
+
prompt="Animate this image with gentle camera movement",
|
86 |
+
image=image,
|
87 |
+
num_frames=120
|
88 |
+
).frames
|
89 |
+
|
90 |
+
export_to_video(video, "animated.mp4", fps=24)
|
91 |
+
```
|
92 |
+
|
93 |
+
## Performance
|
94 |
+
|
95 |
+
- **Inference Speed**: ~2-3 seconds/frame on A100
|
96 |
+
- **Memory**: Requires 24GB+ VRAM for full resolution
|
97 |
+
- **Quantization**: FP16 recommended for consumer GPUs
|
98 |
+
|
99 |
+
## Roadmap
|
100 |
+
|
101 |
+
- ✅ **v1.0** - Wan 2.2 TI2V-5B base (current)
|
102 |
+
- 🔄 **v2.0** - Upgrade to Wan 2.5 when open-source
|
103 |
+
- 📋 **Future** - Fine-tuning for specific styles and domains
|
104 |
+
|
105 |
+
## Limitations
|
106 |
+
|
107 |
+
- Requires high-end GPU (24GB+ VRAM recommended)
|
108 |
+
- Video duration limited to 5 seconds
|
109 |
+
- Best results with detailed, specific prompts
|
110 |
+
- Some motion artifacts in complex scenes
|
111 |
+
|
112 |
+
## Citation
|
113 |
+
|
114 |
+
```bibtex
|
115 |
+
@misc{zen-director-2025,
|
116 |
+
title={Zen Director: Video Generation with Wan 2.2},
|
117 |
+
author={Hanzo AI},
|
118 |
+
year={2025},
|
119 |
+
publisher={HuggingFace},
|
120 |
+
howpublished={\url{https://huggingface.co/zenlm/zen-director}}
|
121 |
+
}
|
122 |
+
|
123 |
+
@article{wan2024,
|
124 |
+
title={Wan 2.2: High-Quality Video Generation},
|
125 |
+
author={Wan-AI Team},
|
126 |
+
journal={arXiv preprint},
|
127 |
+
year={2024}
|
128 |
+
}
|
129 |
+
```
|
130 |
+
|
131 |
+
## License
|
132 |
+
|
133 |
+
Apache 2.0
|
134 |
+
|
135 |
+
---
|
136 |
+
|
137 |
+
**Note**: Based on Wan 2.2. Will be upgraded to Wan 2.5 when it becomes open-source.
|