File size: 13,315 Bytes
593fadb
 
 
 
 
786081c
 
593fadb
 
b482ab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
593fadb
 
 
 
ad0df50
b482ab4
593fadb
 
b482ab4
 
593fadb
 
b482ab4
 
 
593fadb
 
 
b482ab4
593fadb
 
847023f
593fadb
 
 
b482ab4
f87d20d
b482ab4
593fadb
 
 
 
 
 
 
ad0df50
593fadb
9e7169d
593fadb
 
7333d57
593fadb
 
 
 
 
 
e95835e
593fadb
 
 
 
 
e95835e
593fadb
 
 
 
 
 
ad0df50
 
 
 
 
593fadb
 
 
 
 
 
 
 
 
 
 
 
7333d57
593fadb
 
 
 
 
 
 
 
 
1ece415
593fadb
 
 
 
 
f7d61a3
e71658c
f7d61a3
593fadb
 
 
 
7333d57
593fadb
 
 
 
 
 
 
 
f3a8ca8
 
 
4507177
 
f3a8ca8
b647fdc
f3a8ca8
4c8484e
 
 
 
593fadb
 
 
 
 
 
c62a737
 
 
593fadb
 
 
 
 
 
 
 
 
 
 
 
 
 
c62a737
 
 
 
 
 
 
 
 
 
 
 
 
ddde70b
c62a737
 
ddde70b
c62a737
 
 
593fadb
 
 
 
 
 
c62a737
593fadb
c62a737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
593fadb
 
c62a737
593fadb
 
c62a737
 
 
593fadb
 
c62a737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4507177
 
acad3de
 
 
b647fdc
f3a8ca8
4c8484e
c62a737
 
 
593fadb
 
c62a737
593fadb
 
c62a737
 
 
593fadb
 
 
c62a737
 
 
593fadb
 
 
 
 
 
 
 
 
 
 
 
 
c62a737
 
593fadb
c62a737
 
 
593fadb
 
 
 
 
 
c62a737
593fadb
c62a737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
593fadb
 
 
c62a737
 
 
593fadb
c62a737
593fadb
 
c62a737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acad3de
 
f3a8ca8
593fadb
4c8484e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
---
base_model:
- zerofata/L3.3-GeneticLemonade-Unleashed-70B
library_name: transformers
license: llama3
datasets:
- zerofata/Roleplay-Anime-Characters
---
<!DOCTYPE html>
<style>
/* Base styling for cyberpunk theme */
body {font-family: sans-serif; background-color: #080c14; color: #e1e9f0; line-height: 1.6; margin: 0; padding: 0;}

.lemonade-text {
  color: #33ff99;
  position: relative; /* Keep relative positioning */
  z-index: 2;
  margin-left: 0.2em;
  text-shadow: 0 0 10px #33ff99; /* Add static glow */
}

/* Section styling */
.section-container {background-color: rgba(8, 12, 20, 0.7); margin-bottom: 30px; position: relative; overflow: hidden; border-bottom: 1px solid #33ff99;}
.section-header {display: flex; align-items: center; background-color: rgba(0, 195, 255, 0.1); padding: 10px 20px;}
.section-indicator {width: 8px; height: 20px; background-color: #33ff99; margin-right: 15px;}
.section-title {font-family: 'Orbitron', sans-serif; color: #e1e9f0; font-size: 1.3rem; margin: 0; letter-spacing: 2px; text-transform: uppercase; font-weight: 500;}
.section-content {padding: 20px; font-family: sans-serif; color: #e1e9f0; line-height: 1.6;}

/* Title styling */
.title-container {
  background-color: #080c14;
  position: relative;
  overflow: hidden;
  margin-bottom: 40px;
  border-left: 3px solid #33ff99;
}

.title-wrapper {
  position: relative;
  z-index: 2;
  padding: 25px 20px 30px 30px;
  font-family: 'Orbitron', sans-serif;
}

.title-main {
  color: #e1e9f0;
  font-size: 2.5rem; /* Reduced font size */
  font-weight: 700;
  margin: 0;
  letter-spacing: 2px;
  display: inline-block;
  position: relative;
  text-transform: uppercase;
}

.title-prefix {
  position: relative;
  z-index: 2;
}

.title-subtitle {
  padding-left: 15px;
  margin-top: 5px;
  margin-left: 5px;
}

.subtitle-text {
  color: #00c3ff;
  font-size: 1.2rem; /* Reduced font size */
  font-family: 'Orbitron', sans-serif;
  font-weight: 300;
  letter-spacing: 3px;
  text-transform: uppercase;
  display: inline-block;
}

.glitchy-overlay {
  position: absolute;
  top: 0;
  left: 0;
  width: 100%;
  height: 100%;
  background-image: repeating-linear-gradient(0deg, rgba(0,0,0,0) 0, rgba(0,0,0,0.1) 1px, rgba(0,0,0,0) 2px);
  z-index: 1;
}

/* Data box styling */
.data-box {background-color: rgba(0, 0, 0, 0.2); padding: 15px; border-left: 2px solid #33ff99; margin-bottom: 20px;}
.data-row {display: flex; margin-bottom: 8px;}
.data-arrow {color: #33ff99; width: 20px; display: inline-block;}
.data-label {color: #00c3ff; width: 80px; display: inline-block;}

/* Subheading styling */
.subheading {color: #00c3ff; font-size: 1.1rem; margin-top: 20px; margin-bottom: 15px; font-weight: 400; border-bottom: 1px dashed rgba(0, 195, 255, 0.3); display: inline-block; text-transform: uppercase; letter-spacing: 1px; font-family: 'Orbitron', sans-serif;}

/* Links */
a {color: #00c3ff; text-decoration: none;}
a:hover {text-decoration: underline;}

/* Container */
.container {max-width: 1200px; margin: 0 auto; padding: 40px 20px;}

/* Cyberpunk grid background */
.cyber-grid-bg {position: fixed; top: 0; left: 0; right: 0; bottom: 0; background-color: #05071b; background-image: linear-gradient(rgba(0, 194, 255, 0.03) 1px, transparent 1px), linear-gradient(90deg, rgba(0, 194, 255, 0.03) 1px, transparent 1px); background-size: 20px 20px; z-index: -1;}
</style>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>GENETIC LEMONADE UNLEASHED v3</title>
  <link href="https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;600;700&family=JetBrains+Mono:wght@100;300;400;700&display=swap" rel="stylesheet">
</head>
<body>
<div class="cyber-grid-bg"></div>

<div class="container">
  <div class="title-container">
    <!-- Glitchy overlay -->
    <div class="glitchy-overlay"></div>
    <!-- Main title -->
    <div class="title-wrapper">
      <h1 class="title-main">
        <span class="title-prefix">GENETIC</span>
        <span class="lemonade-text">LEMONADE</span> <!-- Static text with glow -->
      </h1>
      <div class="title-subtitle">
        <span class="subtitle-text">UNLEASHED v3</span>
      </div>
    </div>
  </div>

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65b19c6c638328850e12d38c/_XKaHDAVin1ZkdlHyh09q.png)

  <div class="section-container">
    <div class="section-header">
      <div class="section-indicator"></div>
      <h2 class="section-title">01 // OVERVIEW</h2>
    </div>
    <div class="section-content">
      <p>An experimental release.</p>
      <p><a href="https://huggingface.co/zerofata/L3.3-GeneticLemonade-Unleashed-70B">zerofata/GeneticLemonade-Unleashed</a> SFT+DPO QLora finetune.</p>
      <p>This is a creative model intended to excel at character driven RP / ERP. It has not been tested or trained on adventure stories or any large amounts of creative writing.</p>
      <p>This model is designed to provide longer, narrative heavy responses where characters are portrayed accurately and proactively.</p>
    </div>
  </div>

  <div class="section-container">
    <div class="section-header">
      <div class="section-indicator"></div>
      <h2 class="section-title">02 // SILLYTAVERN SETTINGS</h2>
    </div>
    <div class="section-content">
      <p>Play with these, they are not the 'best' settings just a stable baseline. Something interesting to note is this model supports higher temps than would normally be recommended for other L3 models.</p>
      <h3 class="subheading">Recommended Samplers</h3>
      <div class="data-box">
        <div class="data-row">
          <span class="data-arrow">></span>
          <span class="data-label">Temp:</span>
          <span>0.9 - 1.2</span>
        </div>
        <div class="data-row">
          <span class="data-arrow">></span>
          <span class="data-label">MinP:</span>
          <span>0.03 - 0.04</span>
        </div>
        <div class="data-row">
          <span class="data-arrow">></span>
          <span class="data-label">TopP:</span>
          <span>0.9 - 1.0</span>
        </div>
        <div class="data-row">
          <span class="data-arrow">></span>
          <span class="data-label">Dry:</span>
          <span>0.8, 1.75, 4</span>
        </div>
      </div>
      <h3 class="subheading">Instruct</h3>
      <div class="data-box">
        <p style="margin: 0;">Llama-3-Instruct-Names but you will need to uncheck "System same as user".</p>
      </div>
    </div>
  </div>

  <div class="section-container">
    <div class="section-header">
      <div class="section-indicator"></div>
      <h2 class="section-title">03 // QUANTIZATIONS</h2>
    </div>
    <div class="section-content">
      <div style="margin-bottom: 20px;">
        <h3 class="subheading">GGUF</h3>
        <div style="margin-left: 20px;">
          <span style="color: #33ff99; display: inline-block; margin-right: 10px;">> </span><a href="https://huggingface.co/mradermacher/L3.3-GeneticLemonade-Unleashed-v3-70B-i1-GGUF">iMatrix (Mradermacher)</a><br>
        </div>
      </div>
      <div>
        <h3 class="subheading">EXL2</h3>
        <div style="margin-left: 20px;">
          <span style="color: #33ff99; display: inline-block; margin-right: 10px;">> </span><a href="https://huggingface.co/zerofata/L3.3-GeneticLemonade-Unleashed-v3-70B_4bpw-hb6-exl2">4bpw</a><br>
          <span style="color: #33ff99; display: inline-block; margin-right: 10px;">> </span><a href="https://huggingface.co/zerofata/L3.3-GeneticLemonade-Unleashed-v3-70B_4.5bpw-hb6-exl2">4.5bpw</a><br>
          <span style="color: #33ff99; display: inline-block; margin-right: 10px;">> </span><a href="https://huggingface.co/zerofata/L3.3-GeneticLemonade-Unleashed-v3-70B_6bpw-hb8-exl2">6bpw</a>
        </div>
      </div>
    </div>
  </div>

  <div class="section-container">
    <div class="section-header">
      <div class="section-indicator"></div>
      <h2 class="section-title">04 // TRAINING PROCESS</h2>
    </div>
    <div class="section-content">
      <p>The model first went through SFT with a small synthetic dataset of 2.9 million tokens, approximately 750 conversations. Primarily RP data with small amounts of random instruct / assistant data and creative writing.</p>
      <p>The model then went through DPO training using approx 1100 chosen examples from the SFT dataset that were of exceptional quality or showed verifiable instruction following. Rejected samples were generated using another Llama 3.3 finetune that is known for poor instruction following.</p>
    </div>
  </div>
</div>
<h3 class="subheading">Axolotl configs</h3>
<p>Neither are optimized for cost / performance efficiency, YMMV.</p>
<h3>SFT 1*H200</h3>

```yml
# ====================
# MODEL CONFIGURATION
# ====================
base_model: zerofata/L3.3-GeneticLemonade-Unleashed-70B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
special_tokens:
  pad_token: "<|finetune_right_pad_id|>"
chat_template: llama3

# ====================
# DATASET CONFIGURATION
# ====================
datasets:
  - path: ./dataset.jsonl
    type: chat_template
    split: train
    chat_template_strategy: tokenizer
    field_messages: messages
    message_property_mappings:
      role: role
      content: content
    roles:
      user: ["user"]
      assistant: ["assistant"]
      system: ["system"]

test_datasets:
  - path: ./validate_dataset.jsonl
    type: chat_template
    split: train
    chat_template_strategy: tokenizer
    field_messages: messages
    message_property_mappings:
      role: role
      content: content
    roles:
      user: ["user"]
      assistant: ["assistant"]
      system: ["system"]

dataset_prepared_path:
train_on_inputs: false  # Only train on assistant responses

# ====================
# QLORA CONFIGURATION
# ====================
adapter: qlora
load_in_4bit: true
lora_r: 64
lora_alpha: 128
lora_dropout: 0.1
lora_target_linear: true
# lora_modules_to_save:  # Uncomment only if you added NEW tokens

# ====================
# TRAINING PARAMETERS
# ====================
num_epochs: 2
micro_batch_size: 4
gradient_accumulation_steps: 2
learning_rate: 1.5e-5
optimizer: paged_adamw_8bit
lr_scheduler: rex
warmup_ratio: 0.05
weight_decay: 0.01
max_grad_norm: 1.0

# ====================
# SEQUENCE & PACKING
# ====================
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

# ====================
# HARDWARE OPTIMIZATIONS
# ====================
bf16: auto
flash_attention: true
gradient_checkpointing: true

# ====================
# EVALUATION & CHECKPOINTING
# ====================
evaluation_strategy: steps
eval_steps: 5
save_strategy: steps
save_steps: 5
save_total_limit: 5  # Keep best + last few checkpoints
load_best_model_at_end: true
metric_for_best_model: eval_loss
greater_is_better: false
early_stopping_patience: 5

# ====================
# LOGGING & OUTPUT
# ====================
output_dir: ./output_model
logging_steps: 2
save_safetensors: true

# ====================
# WANDB TRACKING
# ====================
wandb_project: project_name
# wandb_entity: your_entity
# wandb_name: your_run_name

```
<h3>DPO 2*H200</h3>

```yml
# ====================
# MODEL CONFIGURATION
# ====================
base_model: ApocalypseParty/unleashed-fulldata30
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
special_tokens: {}
chat_template: tokenizer_default

# ====================
# RL/DPO CONFIGURATION
# ====================
rl: dpo
rl_beta: 0.07

# ====================
# DATASET CONFIGURATION
# ====================
datasets:
  - path: ./dpo_cleaned-v3_deduplicated.jsonl
    type: chat_template.default
    field_messages: conversation
    field_chosen: chosen
    field_rejected: rejected
    message_property_mappings:
      role: role
      content: content
    roles:
      system: ["system"]
      user: ["user"]
      assistant: ["assistant"]
dataset_prepared_path:
train_on_inputs: false  # Only train on assistant responses

# ====================
# QLORA CONFIGURATION
# ====================
adapter: qlora
load_in_4bit: true
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
# lora_modules_to_save:  # Uncomment only if you added NEW tokens

# ====================
# TRAINING PARAMETERS
# ====================
num_epochs: 1
micro_batch_size: 4
gradient_accumulation_steps: 2
learning_rate: 2e-6
optimizer: adamw_8bit
lr_scheduler: cosine
warmup_steps: 5
weight_decay: 0.01
max_grad_norm: 1.0

# ====================
# SEQUENCE CONFIGURATION
# ====================
sequence_len: 4096
pad_to_sequence_len: true

# ====================
# HARDWARE OPTIMIZATIONS
# ====================
bf16: auto
tf32: false
flash_attention: true
gradient_checkpointing: offload
deepspeed: deepspeed_configs/zero1.json

# ====================
# CHECKPOINTING
# ====================
save_steps: 10
save_total_limit: 10
load_best_model_at_end: true
metric_for_best_model: eval_loss
greater_is_better: false

# ====================
# LOGGING & OUTPUT
# ====================
output_dir: ./dpo_model
logging_steps: 2
save_safetensors: true

# ====================
# WANDB TRACKING
# ====================
wandb_project: project_name
# wandb_entity: your_entity
# wandb_name: your_run_name
```
</body>
</html>