zhayunduo commited on
Commit
2ccadcf
1 Parent(s): a966aee

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -5
README.md CHANGED
@@ -4,14 +4,15 @@ license: apache-2.0
4
 
5
  ## **Sentiment Inferencing model for stock related commments**
6
 
7
- ### A project by NUS ISS students Frank Cao, Gerong Zhang, Jiaqi Yao, Sikai Ni, Yunduo Zhang
8
 
9
  <br />
10
 
11
- ### Dataset
12
 
13
  This model is fine tuned with roberta-base model on 3200000 comments from stocktwits, with the user labeled tags 'Bullish' or 'Bearish'
14
- dataset link:
 
15
 
16
  <br />
17
 
@@ -26,6 +27,8 @@ dataset link:
26
  | epoch3 | 0.2360 | 0.1875 | 0.9210 |
27
  | epoch4 | 0.2106 | 0.1603 | 0.9343 |
28
 
 
 
29
  # How to use
30
  ```python
31
  from transformers import RobertaForSequenceClassification, RobertaTokenizer
@@ -56,8 +59,8 @@ model_loaded = RobertaForSequenceClassification.from_pretrained('zhayunduo/rober
56
  nlp = pipeline("text-classification", model=model_loaded, tokenizer=tokenizer_loaded)
57
 
58
  sentences = pd.Series(['just buy','just sell it','entity rocket to the sky!','go down','even though it is going up, I still think it will not keep this trend in the near future'])
59
- # sentences = list(sentences.apply(process_text))
60
- sentences = list(sentences) # if input text contains https, @ or # or $ symbols, better apply preprocess to get a more accurate result
61
  results = nlp(sentences)
62
  print(results) # 2 labels, label 0 is bearish, label 1 is bullish
63
 
 
4
 
5
  ## **Sentiment Inferencing model for stock related commments**
6
 
7
+ #### *A project by NUS ISS students Frank Cao, Gerong Zhang, Jiaqi Yao, Sikai Ni, Yunduo Zhang*
8
 
9
  <br />
10
 
11
+ ### Description
12
 
13
  This model is fine tuned with roberta-base model on 3200000 comments from stocktwits, with the user labeled tags 'Bullish' or 'Bearish'
14
+
15
+ [code on github](https://github.com/Gitrexx/PLPPM_Sentiment_Analysis_via_Stocktwits/tree/main/SentimentEngine)
16
 
17
  <br />
18
 
 
27
  | epoch3 | 0.2360 | 0.1875 | 0.9210 |
28
  | epoch4 | 0.2106 | 0.1603 | 0.9343 |
29
 
30
+ <br />
31
+
32
  # How to use
33
  ```python
34
  from transformers import RobertaForSequenceClassification, RobertaTokenizer
 
59
  nlp = pipeline("text-classification", model=model_loaded, tokenizer=tokenizer_loaded)
60
 
61
  sentences = pd.Series(['just buy','just sell it','entity rocket to the sky!','go down','even though it is going up, I still think it will not keep this trend in the near future'])
62
+ # sentences = list(sentences.apply(process_text)) # if input text contains https, @ or # or $ symbols, better apply preprocess to get a more accurate result
63
+ sentences = list(sentences)
64
  results = nlp(sentences)
65
  print(results) # 2 labels, label 0 is bearish, label 1 is bullish
66