Update README.md
Browse files
README.md
CHANGED
|
@@ -2,20 +2,18 @@
|
|
| 2 |
license: apache-2.0
|
| 3 |
tags:
|
| 4 |
- question-answering
|
| 5 |
-
- information-retrieval
|
| 6 |
-
- tf-idf
|
| 7 |
-
- cosine-similarity
|
| 8 |
-
- mahabharata
|
| 9 |
-
- indian-epic
|
| 10 |
- text-classification
|
| 11 |
- scikit-learn
|
| 12 |
- joblib
|
| 13 |
-
- huggingface-hub
|
| 14 |
- datasets
|
| 15 |
- transformers
|
| 16 |
- natural-language-processing
|
| 17 |
- nlp
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
---
|
| 20 |
# zlt-llm
|
| 21 |
|
|
@@ -48,53 +46,4 @@ This model is designed to answer questions based on the text of the Mahabharata.
|
|
| 48 |
### Installation
|
| 49 |
|
| 50 |
```bash
|
| 51 |
-
pip install datasets scikit-learn joblib huggingface_hub transformers
|
| 52 |
-
import joblib
|
| 53 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
| 54 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 55 |
-
from transformers import pipeline
|
| 56 |
-
from huggingface_hub import hf_hub_download
|
| 57 |
-
|
| 58 |
-
# Load the model from Hugging Face Hub
|
| 59 |
-
model_path = hf_hub_download(repo_id="vprasenjeet099/zlt-llm", filename="qa_model.joblib")
|
| 60 |
-
loaded_model = joblib.load(model_path)
|
| 61 |
-
vectorizer = loaded_model["vectorizer"]
|
| 62 |
-
tfidf_matrix = loaded_model["tfidf_matrix"]
|
| 63 |
-
paragraphs = loaded_model["paragraphs"]
|
| 64 |
-
|
| 65 |
-
def answer_question(question, tfidf_matrix, vectorizer, paragraphs):
|
| 66 |
-
question_vector = vectorizer.transform([question])
|
| 67 |
-
similarities = cosine_similarity(question_vector, tfidf_matrix)
|
| 68 |
-
most_similar_paragraph_index = np.argmax(similarities)
|
| 69 |
-
most_similar_paragraph = paragraphs[most_similar_paragraph_index]
|
| 70 |
-
|
| 71 |
-
paragraph_sentences = most_similar_paragraph.split(".")
|
| 72 |
-
best_sentence = ""
|
| 73 |
-
max_overlap = 0
|
| 74 |
-
|
| 75 |
-
question_words = set(question.lower().split())
|
| 76 |
-
|
| 77 |
-
for sentence in paragraph_sentences:
|
| 78 |
-
sentence = sentence.strip()
|
| 79 |
-
if not sentence:
|
| 80 |
-
continue
|
| 81 |
-
sentence_words = set(sentence.lower().split())
|
| 82 |
-
overlap = len(question_words.intersection(sentence_words))
|
| 83 |
-
if overlap > max_overlap:
|
| 84 |
-
max_overlap = overlap
|
| 85 |
-
best_sentence = sentence
|
| 86 |
-
|
| 87 |
-
return best_sentence.strip()
|
| 88 |
-
|
| 89 |
-
# Example usage
|
| 90 |
-
question = "Who was Arjuna?"
|
| 91 |
-
answer = answer_question(question, tfidf_matrix, vectorizer, paragraphs)
|
| 92 |
-
print(f"Question: {question}")
|
| 93 |
-
print(f"Answer: {answer}")
|
| 94 |
-
|
| 95 |
-
# Example using Transformers pipeline to show how it *could* be improved.
|
| 96 |
-
|
| 97 |
-
qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
|
| 98 |
-
context = paragraphs[0] #first paragraph for example.
|
| 99 |
-
result = qa_pipeline(question=question, context=context)
|
| 100 |
-
print(result) ```
|
|
|
|
| 2 |
license: apache-2.0
|
| 3 |
tags:
|
| 4 |
- question-answering
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
- text-classification
|
| 6 |
- scikit-learn
|
| 7 |
- joblib
|
|
|
|
| 8 |
- datasets
|
| 9 |
- transformers
|
| 10 |
- natural-language-processing
|
| 11 |
- nlp
|
| 12 |
+
datasets:
|
| 13 |
+
- prasenjeet099/mahabharata_great_india_epic
|
| 14 |
+
metrics:
|
| 15 |
+
- accuracy
|
| 16 |
+
pipeline_tag: question-answering
|
| 17 |
---
|
| 18 |
# zlt-llm
|
| 19 |
|
|
|
|
| 46 |
### Installation
|
| 47 |
|
| 48 |
```bash
|
| 49 |
+
pip install datasets scikit-learn joblib huggingface_hub transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|