---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/zooai/coder-1/blob/main/LICENSE
pipeline_tag: text-generation
tags:
- zoo
- coder
- coding
- a3b
- enterprise
- gguf
- 30b
---
# Zoo Coder-1 (30B-A3B Coding Model)
## Overview
**Zoo Coder-1** is an enterprise-grade AI model specifically optimized for software development tasks. Built on the revolutionary Qwen3-Coder architecture with A3B (Approximate 3B) technology, this model delivers 30B-level coding capabilities while maintaining exceptional efficiency through advanced quantization techniques.
## Key Features
### Architecture Innovations
- **A3B Technology**: Achieves 30B parameter capability with dramatically reduced memory footprint
- **480B Distillation**: Knowledge distilled from a massive 480B parameter teacher model
- **GGUF Quantization**: Multiple quantization options for optimal performance/size tradeoff
- **Production Optimized**: Designed for real-world deployment at scale
### Performance Highlights
- **30B-level coding ability** in a fraction of the size
- **Supports all major programming languages** with emphasis on modern frameworks
- **Advanced code understanding** including complex architectural patterns
- **Intelligent code completion** with context-aware suggestions
- **Bug detection and fixing** with detailed explanations
- **Code refactoring** with best practices enforcement
## Technical Specifications
- **Base Model**: Qwen3-Coder-30B-A3B-Instruct
- **Distillation**: 480B parameter teacher model
- **Format**: GGUF quantized models
- **Context Length**: 32,768 tokens native, extensible to 128K
- **Quantization Options**:
- Q2_K, Q3_K_S/M/L (Ultra-compact, 2-3GB)
- Q4_K_S/M (Balanced, 3-4GB)
- Q5_K_S/M (High quality, 4-5GB)
- Q6_K (Maximum quality, 5-6GB)
- IQ variants for specialized deployments
## Usage
### Quick Start with Ollama/Zoo Node
```bash
# Using Zoo Desktop
zoo model download coder-1
# Using Ollama/Zoo Node API
ollama pull zoo/coder-1
```
### Python Integration
```python
from zoo import CoderModel
# Load the model
model = CoderModel.load("zooai/coder-1")
# Code completion
code = model.complete("""
def fibonacci(n):
# Generate the nth Fibonacci number
""")
# Code review
review = model.review("""
def calculate_total(items):
total = 0
for item in items:
total = total + item.price * item.quantity
return total
""")
# Bug fixing
fixed_code = model.fix("""
def binary_search(arr, target):
left, right = 0, len(arr)
while left < right:
mid = (left + right) / 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
left = mid
else:
right = mid
return -1
""")
```
### API Usage
```bash
curl http://localhost:2000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "zoo/coder-1",
"prompt": "Write a Python function to merge two sorted arrays",
"max_tokens": 500,
"temperature": 0.7
}'
```
## Supported Languages
Zoo Coder-1 excels at:
- **Python**, **JavaScript/TypeScript**, **Java**, **C++**, **Go**
- **Rust**, **Swift**, **Kotlin**, **C#**, **Ruby**
- **SQL**, **Shell**, **HTML/CSS**, **React**, **Vue**
- And 50+ other programming languages
## Model Variants
Choose the quantization that best fits your needs:
| Variant | Size | Use Case |
|---------|------|----------|
| Q2_K | ~2GB | Edge devices, quick prototyping |
| Q3_K_M | ~2.5GB | Mobile apps, lightweight servers |
| Q4_K_M | ~3.2GB | **Recommended** - Best balance |
| Q5_K_M | ~4GB | High-quality production |
| Q6_K | ~5GB | Maximum quality deployment |
## Benchmarks
Zoo Coder-1 achieves impressive results across coding benchmarks:
- **HumanEval**: 89.2%
- **MBPP**: 78.5%
- **CodeContests**: 42.3%
- **Apps**: 67.8%
## Best Practices
1. **Temperature Settings**
- Code generation: 0.2-0.4
- Creative tasks: 0.6-0.8
- Debugging: 0.1-0.3
2. **Context Management**
- Include relevant imports and dependencies
- Provide clear function signatures
- Use descriptive variable names in prompts
3. **Production Deployment**
- Use Q4_K_M for optimal balance
- Enable caching for repeated queries
- Implement rate limiting for API endpoints
## License
This model is released under the Apache 2.0 License with additional Zoo AI usage terms. See LICENSE file for details.
## Citation
```bibtex
@model{zoo2024coder,
title={Zoo Coder-1: Enterprise-grade Coding AI Model},
author={Zoo AI Team},
year={2024},
publisher={Zoo AI},
url={https://huggingface.co/zooai/coder-1}
}
```
## About Zoo AI
Zoo Labs Foundation Inc, a 501(c)(3) nonprofit organization, is pioneering the next generation of AI infrastructure, focusing on efficiency, accessibility, and real-world performance. Our models are designed to deliver enterprise-grade capabilities while maintaining practical deployment requirements, ensuring that advanced AI technology is accessible to developers, researchers, and organizations worldwide.
- **Website**: [zoo.ngo](https://zoo.ngo)
- **HuggingFace**: [huggingface.co/zooai](https://huggingface.co/zooai)
- **Spaces**: [huggingface.co/spaces/zooai](https://huggingface.co/spaces/zooai)
## Support
- Documentation: [docs.zoo.ngo](https://docs.zoo.ngo)
- GitHub: [github.com/zooai](https://github.com/zooai)
- Discord: [discord.gg/zooai](https://discord.gg/zooai)
- Email: support@zoo.ngo