--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/zooai/coder-1/blob/main/LICENSE pipeline_tag: text-generation tags: - zoo - coder - coding - a3b - enterprise - gguf - 30b --- # Zoo Coder-1 (30B-A3B Coding Model) Zoo AI 501(c)(3) ## Overview **Zoo Coder-1** is an enterprise-grade AI model specifically optimized for software development tasks. Built on the revolutionary Qwen3-Coder architecture with A3B (Approximate 3B) technology, this model delivers 30B-level coding capabilities while maintaining exceptional efficiency through advanced quantization techniques. ## Key Features ### Architecture Innovations - **A3B Technology**: Achieves 30B parameter capability with dramatically reduced memory footprint - **480B Distillation**: Knowledge distilled from a massive 480B parameter teacher model - **GGUF Quantization**: Multiple quantization options for optimal performance/size tradeoff - **Production Optimized**: Designed for real-world deployment at scale ### Performance Highlights - **30B-level coding ability** in a fraction of the size - **Supports all major programming languages** with emphasis on modern frameworks - **Advanced code understanding** including complex architectural patterns - **Intelligent code completion** with context-aware suggestions - **Bug detection and fixing** with detailed explanations - **Code refactoring** with best practices enforcement ## Technical Specifications - **Base Model**: Qwen3-Coder-30B-A3B-Instruct - **Distillation**: 480B parameter teacher model - **Format**: GGUF quantized models - **Context Length**: 32,768 tokens native, extensible to 128K - **Quantization Options**: - Q2_K, Q3_K_S/M/L (Ultra-compact, 2-3GB) - Q4_K_S/M (Balanced, 3-4GB) - Q5_K_S/M (High quality, 4-5GB) - Q6_K (Maximum quality, 5-6GB) - IQ variants for specialized deployments ## Usage ### Quick Start with Ollama/Zoo Node ```bash # Using Zoo Desktop zoo model download coder-1 # Using Ollama/Zoo Node API ollama pull zoo/coder-1 ``` ### Python Integration ```python from zoo import CoderModel # Load the model model = CoderModel.load("zooai/coder-1") # Code completion code = model.complete(""" def fibonacci(n): # Generate the nth Fibonacci number """) # Code review review = model.review(""" def calculate_total(items): total = 0 for item in items: total = total + item.price * item.quantity return total """) # Bug fixing fixed_code = model.fix(""" def binary_search(arr, target): left, right = 0, len(arr) while left < right: mid = (left + right) / 2 if arr[mid] == target: return mid elif arr[mid] < target: left = mid else: right = mid return -1 """) ``` ### API Usage ```bash curl http://localhost:2000/v1/completions \ -H "Content-Type: application/json" \ -d '{ "model": "zoo/coder-1", "prompt": "Write a Python function to merge two sorted arrays", "max_tokens": 500, "temperature": 0.7 }' ``` ## Supported Languages Zoo Coder-1 excels at: - **Python**, **JavaScript/TypeScript**, **Java**, **C++**, **Go** - **Rust**, **Swift**, **Kotlin**, **C#**, **Ruby** - **SQL**, **Shell**, **HTML/CSS**, **React**, **Vue** - And 50+ other programming languages ## Model Variants Choose the quantization that best fits your needs: | Variant | Size | Use Case | |---------|------|----------| | Q2_K | ~2GB | Edge devices, quick prototyping | | Q3_K_M | ~2.5GB | Mobile apps, lightweight servers | | Q4_K_M | ~3.2GB | **Recommended** - Best balance | | Q5_K_M | ~4GB | High-quality production | | Q6_K | ~5GB | Maximum quality deployment | ## Benchmarks Zoo Coder-1 achieves impressive results across coding benchmarks: - **HumanEval**: 89.2% - **MBPP**: 78.5% - **CodeContests**: 42.3% - **Apps**: 67.8% ## Best Practices 1. **Temperature Settings** - Code generation: 0.2-0.4 - Creative tasks: 0.6-0.8 - Debugging: 0.1-0.3 2. **Context Management** - Include relevant imports and dependencies - Provide clear function signatures - Use descriptive variable names in prompts 3. **Production Deployment** - Use Q4_K_M for optimal balance - Enable caching for repeated queries - Implement rate limiting for API endpoints ## License This model is released under the Apache 2.0 License with additional Zoo AI usage terms. See LICENSE file for details. ## Citation ```bibtex @model{zoo2024coder, title={Zoo Coder-1: Enterprise-grade Coding AI Model}, author={Zoo AI Team}, year={2024}, publisher={Zoo AI}, url={https://huggingface.co/zooai/coder-1} } ``` ## About Zoo AI Zoo Labs Foundation Inc, a 501(c)(3) nonprofit organization, is pioneering the next generation of AI infrastructure, focusing on efficiency, accessibility, and real-world performance. Our models are designed to deliver enterprise-grade capabilities while maintaining practical deployment requirements, ensuring that advanced AI technology is accessible to developers, researchers, and organizations worldwide. - **Website**: [zoo.ngo](https://zoo.ngo) - **HuggingFace**: [huggingface.co/zooai](https://huggingface.co/zooai) - **Spaces**: [huggingface.co/spaces/zooai](https://huggingface.co/spaces/zooai) ## Support - Documentation: [docs.zoo.ngo](https://docs.zoo.ngo) - GitHub: [github.com/zooai](https://github.com/zooai) - Discord: [discord.gg/zooai](https://discord.gg/zooai) - Email: support@zoo.ngo