Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
- test1.zip +2 -2
- test1/data +4 -4
- test1/policy.optimizer.pth +1 -1
- test1/policy.pth +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 271.30 +/- 16.00
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9be4306d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9be4306dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9be4306e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9be4306ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f9be4306f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f9be4321050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9be43210e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9be4321170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9be4321200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9be4321290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9be4321320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9be4364ba0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652601486.6530905, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr5vL3sUYo2oiXAO02kpbw0blQ7hnmRvQAAAAAAAIA/s4yWvSn4UboTunG6ZiT+NCm8Ozsuvow5AACAPwAAgD9mLeK8pAAXuSYdVTyCYkEz4MVFO/7TEDMAAIA/AACAP+bNRL2Pugq6qlunOisa8jReIZ27rhjEuQAAgD8AAIA/zcwnvSlQe7oCRC+7VYbPNJJ7XzvC4Ew6AACAPwAAgD9mY3W9w6k6uiNr3TpTMKs18lKtu28YozQAAIA/AACAPw2dwr2bmAM/y9XgPSkihL5mqTM9OoM4PAAAAAAAAAAAutJBPhvfjbwAxJC6YjLWOD/L/L1xMrY5AACAPwAAgD9mQt68KTQuuoAH+LvlPDWzsQk2u0DnWjMAAIA/AACAP4BDI72uK5e6jvP7O0XMgjdShCS7KClsNgAAgD8AAIA/wCutvY9+bbqR+0M9PENZtib5rjrj6E+1AAAAAAAAgD8AbP68cf0IOJ6ZG7uJHBO3EzeyO1cJOToAAIA/AACAP2BDTL5Sdds8K5gduYk6qDdjkna+lrlnOAAAgD8AAIA/YPVvvgqVaDyguGU8yv86usDv771KxjU7AACAPwAAgD/m7zm9KRROuv21qjvUfwI2hkvvOksZ+TQAAIA/AACAPxp4vz0/xS0/gGduPdAUyr7fbg8+YDMbvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+aBns2pJZECUhpRSlIwBbJRN6AOMAXSUR0CAdT2tdRixdX2UKGgGaAloD0MIrfawFwpbXUCUhpRSlGgVTegDaBZHQICRKc3EQ5F1fZQoaAZoCWgPQwh872/QXg0zQJSGlFKUaBVLx2gWR0CAla1ejVQRdX2UKGgGaAloD0MI7ImuCz8QLECUhpRSlGgVTegDaBZHQICXSYiPhhp1fZQoaAZoCWgPQwhKQbeXNMhUQJSGlFKUaBVN6ANoFkdAgJphMajveHV9lChoBmgJaA9DCE0Ttp8MMWJAlIaUUpRoFU3oA2gWR0CAqckQf6oEdX2UKGgGaAloD0MINC4cCMkCIsCUhpRSlGgVS6toFkdAgLBrjghr33V9lChoBmgJaA9DCLMHWoGhlmJAlIaUUpRoFU3oA2gWR0CA6hu5z5oHdX2UKGgGaAloD0MIMevFUE7nZUCUhpRSlGgVTegDaBZHQIDwQGnn+yZ1fZQoaAZoCWgPQwhw0jQomtNWQJSGlFKUaBVN6ANoFkdAgPOoUrTYunV9lChoBmgJaA9DCCyBlNi1ZF1AlIaUUpRoFU3oA2gWR0CA9mvVVghKdX2UKGgGaAloD0MIuOo6VFNzXkCUhpRSlGgVTegDaBZHQID3GMIeHSF1fZQoaAZoCWgPQwi0HVN35eJjQJSGlFKUaBVN6ANoFkdAgQbgu7HyVnV9lChoBmgJaA9DCEs9C0J5ZmNAlIaUUpRoFU3oA2gWR0CBEpAKv3ajdX2UKGgGaAloD0MIf9qoTodUY0CUhpRSlGgVTegDaBZHQIEgdqagElp1fZQoaAZoCWgPQwiv6UFBKRJkQJSGlFKUaBVN6ANoFkdAgTJo3R5TqHV9lChoBmgJaA9DCBe7fVYZDGFAlIaUUpRoFU3oA2gWR0CBN0hakhzOdX2UKGgGaAloD0MI3J4gsd3gZUCUhpRSlGgVTegDaBZHQIE5WcriEQJ1fZQoaAZoCWgPQwjJHTaRmVVjQJSGlFKUaBVN6ANoFkdAgVadPLxI8XV9lChoBmgJaA9DCPNWXYdqgWJAlIaUUpRoFU3oA2gWR0CBXJzWf9P2dX2UKGgGaAloD0MIaXQHsbPGZkCUhpRSlGgVTegDaBZHQIFfi0KJEYx1fZQoaAZoCWgPQwhIaww6IZhmQJSGlFKUaBVN6ANoFkdAgW6F/6O5rnV9lChoBmgJaA9DCIV9O4mIT2NAlIaUUpRoFU3oA2gWR0CBdMC4jKPodX2UKGgGaAloD0MICFVq9kAuYkCUhpRSlGgVTegDaBZHQIF3NKK508x1fZQoaAZoCWgPQwgIWRZM/NlgQJSGlFKUaBVN6ANoFkdAgbKclHBk7XV9lChoBmgJaA9DCJM6AU2EqGJAlIaUUpRoFU3oA2gWR0CBtZZyuIRAdX2UKGgGaAloD0MIOGqF6fsyY0CUhpRSlGgVTegDaBZHQIG4M0iyIHl1fZQoaAZoCWgPQwjBOo4fqtlhQJSGlFKUaBVN6ANoFkdAgbjXFtKqXHV9lChoBmgJaA9DCBjQC3cu/B1AlIaUUpRoFUvQaBZHQIHAYhpxm051fZQoaAZoCWgPQwhaKQRyCT5iQJSGlFKUaBVN6ANoFkdAgckWuHN5dHV9lChoBmgJaA9DCEUNpmH4aAPAlIaUUpRoFUu1aBZHQIHMEpuuRtB1fZQoaAZoCWgPQwg2rRQCuUNgQJSGlFKUaBVN6ANoFkdAgdRqwQlKLHV9lChoBmgJaA9DCJgvL8C+C2BAlIaUUpRoFU3oA2gWR0CB4lkZJkGzdX2UKGgGaAloD0MIgc6kTdX5NUCUhpRSlGgVS7xoFkdAgeWiaZx7zHV9lChoBmgJaA9DCDvikA2kHGdAlIaUUpRoFU3oA2gWR0CB9KxUvPC3dX2UKGgGaAloD0MI/I7hsZ8XXkCUhpRSlGgVTegDaBZHQIH5sIomXw91fZQoaAZoCWgPQwgfoPtyZo9iQJSGlFKUaBVN6ANoFkdAgfvWxIJ7cHV9lChoBmgJaA9DCHzzGyYa3GBAlIaUUpRoFU3oA2gWR0CCGAElme18dX2UKGgGaAloD0MI1a4JaQ0baECUhpRSlGgVTegDaBZHQIIdQqgAZKp1fZQoaAZoCWgPQwjBO/n0WK9gQJSGlFKUaBVN6ANoFkdAgiAWPDHfdnV9lChoBmgJaA9DCC6sG+8OZmFAlIaUUpRoFU3oA2gWR0CCNKxUvPC3dX2UKGgGaAloD0MIBmfw9wtfYkCUhpRSlGgVTegDaBZHQII3OGTLW7R1fZQoaAZoCWgPQwg2dR4V/1lbQJSGlFKUaBVN6ANoFkdAgjxx28qWknV9lChoBmgJaA9DCKD83TtqzWBAlIaUUpRoFU3oA2gWR0CCeCIpH7P6dX2UKGgGaAloD0MIujDSi9r8YUCUhpRSlGgVTegDaBZHQIJ40qBmPHV1fZQoaAZoCWgPQwhQVDasqYBWQJSGlFKUaBVN6ANoFkdAgoEQljVhC3V9lChoBmgJaA9DCAR2NXnK+WVAlIaUUpRoFU3oA2gWR0CCijdEb5uZdX2UKGgGaAloD0MIEwt8RbcdZUCUhpRSlGgVTegDaBZHQIKWfseGO+91fZQoaAZoCWgPQwgdHy3OGEhSQJSGlFKUaBVNIQFoFkdAgqCGPHT7VXV9lChoBmgJaA9DCDZXzXPEumBAlIaUUpRoFU3oA2gWR0CCpXNYbKigdX2UKGgGaAloD0MIW9B7YwgcM8CUhpRSlGgVS8FoFkdAgqX6sySFG3V9lChoBmgJaA9DCIxNK4VAyWRAlIaUUpRoFU3oA2gWR0CCqIZaV2RrdX2UKGgGaAloD0MISwSqf5A/YECUhpRSlGgVTegDaBZHQIK2sAPuogp1fZQoaAZoCWgPQwibIVUUL9dhQJSGlFKUaBVN6ANoFkdAgrtehPCVKXV9lChoBmgJaA9DCAaBlUOLE2ZAlIaUUpRoFU3oA2gWR0CCvVcXWOIZdX2UKGgGaAloD0MImODUB5JHHsCUhpRSlGgVS8RoFkdAgtaa2fChvnV9lChoBmgJaA9DCPLqHAOyeWVAlIaUUpRoFU3oA2gWR0CC2ggBcRlIdX2UKGgGaAloD0MIOzlDccfJXkCUhpRSlGgVTegDaBZHQILfnQD3dsV1fZQoaAZoCWgPQwgHQUerWn9jQJSGlFKUaBVN6ANoFkdAguI5VwPy1HV9lChoBmgJaA9DCIJTH0je9WNAlIaUUpRoFU3oA2gWR0CC9x3+MqBmdX2UKGgGaAloD0MImGvRAjQcYUCUhpRSlGgVTegDaBZHQIL5kd1dPcl1fZQoaAZoCWgPQwhJEoQroOVnQJSGlFKUaBVN6ANoFkdAgv8cIzFdcHV9lChoBmgJaA9DCDbIJCNnhGFAlIaUUpRoFU3oA2gWR0CDOyM72cridX2UKGgGaAloD0MIi8HDtG+NYECUhpRSlGgVTegDaBZHQINEZTOxB3R1fZQoaAZoCWgPQwiKkpBI28A/QJSGlFKUaBVL0GgWR0CDUUvUSZjQdX2UKGgGaAloD0MIaJWZ0vqHM8CUhpRSlGgVS8poFkdAg1ZYHHFPznV9lChoBmgJaA9DCIhlM4ckW2NAlIaUUpRoFU3oA2gWR0CDWZXlr/KhdX2UKGgGaAloD0MILxfxnZisZUCUhpRSlGgVTegDaBZHQINjVmYjSoh1fZQoaAZoCWgPQwhZw0Xu6QteQJSGlFKUaBVN6ANoFkdAg2fsKLKmsXV9lChoBmgJaA9DCP4Mb9bgcV5AlIaUUpRoFU3oA2gWR0CDaG9i+cpcdX2UKGgGaAloD0MIQN6rViaLW0CUhpRSlGgVTegDaBZHQINq0KRdQfp1fZQoaAZoCWgPQwi+h0uOO+VGQJSGlFKUaBVL4GgWR0CDb9UAksz3dX2UKGgGaAloD0MI3xrYKsGiK8CUhpRSlGgVS5doFkdAg3auJ+DvmnV9lChoBmgJaA9DCEUSvYxi8GBAlIaUUpRoFU3oA2gWR0CDd5XEqDsddX2UKGgGaAloD0MIJ9wr89YAYkCUhpRSlGgVTegDaBZHQIN9m2JBPbh1fZQoaAZoCWgPQwgSwqONI/pEQJSGlFKUaBVL+WgWR0CDhujYZl4DdX2UKGgGaAloD0MIQiWuY1xMY0CUhpRSlGgVTegDaBZHQIOUbhUBGQV1fZQoaAZoCWgPQwg7Vik909phQJSGlFKUaBVN6ANoFkdAg5ev9DQZ43V9lChoBmgJaA9DCGvz/6ojR15AlIaUUpRoFU3oA2gWR0CDnCMrEtNBdX2UKGgGaAloD0MIBaVo5V6eXkCUhpRSlGgVTegDaBZHQIOebDIikft1fZQoaAZoCWgPQwjkoe9u5RhgQJSGlFKUaBVN6ANoFkdAg7AYPPLPlnV9lChoBmgJaA9DCBGrP8IwMGJAlIaUUpRoFU3oA2gWR0CDsmCo0hvBdX2UKGgGaAloD0MIKSUEq+pNJMCUhpRSlGgVS9VoFkdAg7aipFTef3V9lChoBmgJaA9DCLPuHwtRnWVAlIaUUpRoFU3oA2gWR0CD+0UDdP+GdX2UKGgGaAloD0MIMxr5vOJRNkCUhpRSlGgVTQUBaBZHQIQKrpzLfUF1fZQoaAZoCWgPQwiCWDZzSHViQJSGlFKUaBVN6ANoFkdAhA2LX+VC5XV9lChoBmgJaA9DCF+X4T/dMl5AlIaUUpRoFU3oA2gWR0CEENzND+irdX2UKGgGaAloD0MIZOjYQaVuZkCUhpRSlGgVTegDaBZHQIQfA20iQkp1fZQoaAZoCWgPQwjoFORnI2BiQJSGlFKUaBVN6ANoFkdAhCIJVbRne3V9lChoBmgJaA9DCIE9JlKallxAlIaUUpRoFU3oA2gWR0CEJ5X6InBtdX2UKGgGaAloD0MIH/RsVv2sY0CUhpRSlGgVTegDaBZHQIQu3h60IC51fZQoaAZoCWgPQwigjVw3pcdbQJSGlFKUaBVN6ANoFkdAhC/JYcNpd3V9lChoBmgJaA9DCMqMt5Ve31tAlIaUUpRoFU3oA2gWR0CENeNp/PPcdX2UKGgGaAloD0MI++WTFUMqZUCUhpRSlGgVTegDaBZHQIQ/pnezlcR1fZQoaAZoCWgPQwgIVWr2QNMwQJSGlFKUaBVLzGgWR0CESXuYx+KCdX2UKGgGaAloD0MI+GwdHGwhYECUhpRSlGgVTegDaBZHQIRM/3UQTVV1fZQoaAZoCWgPQwgGvMywUTFeQJSGlFKUaBVN6ANoFkdAhFAh0p3HJnV9lChoBmgJaA9DCH9o5sk1rmJAlIaUUpRoFU3oA2gWR0CEV2YpDu0DdX2UKGgGaAloD0MIaCCWzRymXECUhpRSlGgVTegDaBZHQIRq/cgyM1l1fZQoaAZoCWgPQwipT3KHTalbQJSGlFKUaBVN6ANoFkdAhHK5M10knnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9be4306d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9be4306dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9be4306e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9be4306ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f9be4306f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f9be4321050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9be43210e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9be4321170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9be4321200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9be4321290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9be4321320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9be4364ba0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652603999.2244782, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZAUD0bQ5+8EImBPSojHj2rYR++JtXyPQAAgD8AAIA/5ngMPcO5VLobTdK3Hv3IssARgzj9g/c2AACAPwAAgD/6kSa+UCSYP9Yx+b6mDwe/e0hhvg+Ssb0AAAAAAAAAAE3eqT2kVWG7eqyovKd8tzyUHIU8sDGbvQAAAAAAAIA/zeCAvD0bS7vTx1Y+hcYrvr+snDyEAwm/AAAAAAAAgD9mnDg9uM62u6MZU71FPpg84rsDPW3NgL0AAIA/AACAP5rp9bpx61G7VVaPvpUWljz9z7c8lq2AvQAAAAAAAIA/PURWvnCygz+mSFa+01Tyvl+shb4mfV48AAAAAAAAAAAaXmG9TNymPwOKEr+xCyO/8NhwuwK6Jr4AAAAAAAAAAAAkujtvdJ8/pnZePQlFHb8YrSo8bYH2ugAAAAAAAAAAmjOOPJYTcD35MCg+VwlNvvyC1TyFbzO9AAAAAAAAAABm8/s8/BJ8PR6qlj1zRTm+MjWlPYJZPT0AAAAAAAAAAKYeXT4gPks/Zv0fPnZnFr/grFo+5Tf6OwAAAAAAAAAAmqKIvFyDB7xiFRS8G8KUPBabXT3YNXi9AACAPwAAgD/tOkC+eqq3P8IXLL+7ZKO+p9xIvqKE0L0AAAAAAAAAADPClbz25Fq64ufmO7QezLWfLxm5Zna4tAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVXhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIL/mf/N1AckCUhpRSlIwBbJRNDwGMAXSUR0CpL5pvo/zKdX2UKGgGaAloD0MITBdi9QfGckCUhpRSlGgVTUwBaBZHQKkwTHU+cH51fZQoaAZoCWgPQwga/P1iNrNxQJSGlFKUaBVNCwFoFkdAqTB5ew9q13V9lChoBmgJaA9DCNY4m44ADEVAlIaUUpRoFUv5aBZHQKkxXgqmTDB1fZQoaAZoCWgPQwiFsBpL2KpuQJSGlFKUaBVNAQFoFkdAqTGlrylN13V9lChoBmgJaA9DCDdQ4J38Tm5AlIaUUpRoFU0cAWgWR0CpMe1bA1vVdX2UKGgGaAloD0MIHxFTIommcUCUhpRSlGgVTR0BaBZHQKkyNxFy7wt1fZQoaAZoCWgPQwh+qDRiZgxwQJSGlFKUaBVNPAFoFkdAqTJtMTN+s3V9lChoBmgJaA9DCBpOmZtvKnBAlIaUUpRoFU0DAWgWR0CpMuoakyk9dX2UKGgGaAloD0MIHm6HhgW5cUCUhpRSlGgVTRUBaBZHQKkzazv7WNF1fZQoaAZoCWgPQwh+OEiIMjpzQJSGlFKUaBVNLwFoFkdAqTPYMx46fnV9lChoBmgJaA9DCOi/B68dhnJAlIaUUpRoFU0gAWgWR0CpM+Y9ovi+dX2UKGgGaAloD0MI6kKs/khHckCUhpRSlGgVS+VoFkdAqTQeKXOW0XV9lChoBmgJaA9DCEsEqn8Q23FAlIaUUpRoFU0TAWgWR0CpNDDHOryUdX2UKGgGaAloD0MIIjfDDXgdcECUhpRSlGgVTSMBaBZHQKk0drzGxUx1fZQoaAZoCWgPQwjkolpEFFFNQJSGlFKUaBVLumgWR0CpNXIGQjlgdX2UKGgGaAloD0MIsB9ig4UTcECUhpRSlGgVTQkBaBZHQKk1aPlMh5h1fZQoaAZoCWgPQwj7zi9K0BpsQJSGlFKUaBVNEQNoFkdAqTWZQ53kgnV9lChoBmgJaA9DCLfT1oig4XJAlIaUUpRoFU0MAWgWR0CpNZ6xX4j9dX2UKGgGaAloD0MIl8rbEU7tcECUhpRSlGgVS/ZoFkdAqTZHMW43FXV9lChoBmgJaA9DCPcgBORL7nBAlIaUUpRoFU0RAWgWR0CpNofT9bX6dX2UKGgGaAloD0MIHsU56uhmbkCUhpRSlGgVS99oFkdAqTaMERrad3V9lChoBmgJaA9DCKSJd4BnM3JAlIaUUpRoFU3IAWgWR0CpNxB8IAwPdX2UKGgGaAloD0MIN8e5TbhXcUCUhpRSlGgVS+JoFkdAqTcKay8jA3V9lChoBmgJaA9DCD3WjAxyjW1AlIaUUpRoFU0nAWgWR0CpN57ZFocrdX2UKGgGaAloD0MIZcdGIF5hRUCUhpRSlGgVS7ZoFkdAqTe8wg1WKnV9lChoBmgJaA9DCHsUrkfhM25AlIaUUpRoFUv8aBZHQKk3+l+EytV1fZQoaAZoCWgPQwg8hzJUxRVwQJSGlFKUaBVL8GgWR0CpOCv7m+0xdX2UKGgGaAloD0MI+62dKIkLbUCUhpRSlGgVS/VoFkdAqTiUf3evZHV9lChoBmgJaA9DCOTZ5VtfV3BAlIaUUpRoFU0WAWgWR0CpOOXfhuO0dX2UKGgGaAloD0MISDKrd3iEckCUhpRSlGgVTQoBaBZHQKk44ZYPoV51fZQoaAZoCWgPQwiNCwdCMg1uQJSGlFKUaBVNBgFoFkdAqToeizsyBXV9lChoBmgJaA9DCJASu7a36HFAlIaUUpRoFU0cAWgWR0CpOo3J5mh/dX2UKGgGaAloD0MIxxFr8amGckCUhpRSlGgVTRABaBZHQKk6jjPOY6Z1fZQoaAZoCWgPQwhfzmxX6NFGQJSGlFKUaBVLwmgWR0CpOpgKF7D3dX2UKGgGaAloD0MI7iHhe78UcECUhpRSlGgVTRwBaBZHQKk6whg3Lmp1fZQoaAZoCWgPQwiUaMnj6a1wQJSGlFKUaBVNCAFoFkdAqTsT9wWFe3V9lChoBmgJaA9DCDigpStYzW9AlIaUUpRoFUv2aBZHQKk7impEQXh1fZQoaAZoCWgPQwjd0f9yra5yQJSGlFKUaBVNEwFoFkdAqTuHwXqJM3V9lChoBmgJaA9DCBkCgGNPt29AlIaUUpRoFU0WAWgWR0CpSSmvGIbgdX2UKGgGaAloD0MItXBZhc1sS0CUhpRSlGgVS89oFkdAqUlTK1XvIHV9lChoBmgJaA9DCLr0L0llam1AlIaUUpRoFU0QAWgWR0CpSjV2zOX3dX2UKGgGaAloD0MI0o2wqIi7c0CUhpRSlGgVS/5oFkdAqUpQekpI+XV9lChoBmgJaA9DCIfguIybSnFAlIaUUpRoFU0gAWgWR0CpSmJ1aGHpdX2UKGgGaAloD0MIbwwBwDHycUCUhpRSlGgVS/hoFkdAqUqem78Nx3V9lChoBmgJaA9DCH3Qs1k1v3FAlIaUUpRoFUvpaBZHQKlKpxVAAyV1fZQoaAZoCWgPQwhWZHRAEsdtQJSGlFKUaBVL/2gWR0CpSwLCvX9SdX2UKGgGaAloD0MI9vBlokiZckCUhpRSlGgVTRABaBZHQKlMkqYJE6V1fZQoaAZoCWgPQwii1ckZCuZtQJSGlFKUaBVL/2gWR0CpTKi3XqZ/dX2UKGgGaAloD0MIa54j8p2icECUhpRSlGgVTQQBaBZHQKlMzDKHO8l1fZQoaAZoCWgPQwibjgBulrpuQJSGlFKUaBVL+WgWR0CpTRoXj2i+dX2UKGgGaAloD0MIA5ZcxeL2a0CUhpRSlGgVS+BoFkdAqU0p3cHnlnV9lChoBmgJaA9DCOdSXFU2I3JAlIaUUpRoFUvoaBZHQKlNRAymALB1fZQoaAZoCWgPQwjD76Zb9kNyQJSGlFKUaBVNIgFoFkdAqU1TqbBoEnV9lChoBmgJaA9DCAEXZMtydG9AlIaUUpRoFUv8aBZHQKlNn5qubI91fZQoaAZoCWgPQwg7cw8J31NwQJSGlFKUaBVNJAFoFkdAqU2MJrtVrHV9lChoBmgJaA9DCOG3IcZrdVJAlIaUUpRoFUu+aBZHQKlNz2ll9Sd1fZQoaAZoCWgPQwi5UWStodxvQJSGlFKUaBVNAwFoFkdAqU3r2pQ1rXV9lChoBmgJaA9DCKfLYmJzdHJAlIaUUpRoFUvpaBZHQKlOTxWDHwR1fZQoaAZoCWgPQwj/If32dX9wQJSGlFKUaBVNCwFoFkdAqU7/Fm4Aj3V9lChoBmgJaA9DCJMdG4F40HFAlIaUUpRoFU0BAWgWR0CpTyVv/BFedX2UKGgGaAloD0MIzqW4qqywcECUhpRSlGgVTQwBaBZHQKlPS1fmcON1fZQoaAZoCWgPQwhJLZRMTutyQJSGlFKUaBVNCgFoFkdAqVGU1hsqKHV9lChoBmgJaA9DCB/2QgHbOm9AlIaUUpRoFU0hAWgWR0CpUd0PYnOTdX2UKGgGaAloD0MI7C5QUqCeckCUhpRSlGgVTRwBaBZHQKlR17Z39rJ1fZQoaAZoCWgPQwiDMLd7+eFyQJSGlFKUaBVNBQFoFkdAqVHk8aGYbHV9lChoBmgJaA9DCBAf2PGfanFAlIaUUpRoFUvjaBZHQKlR+O+ZgG91fZQoaAZoCWgPQwhOgGH5sx9yQJSGlFKUaBVNDAFoFkdAqVH5cAzYVnV9lChoBmgJaA9DCCL6tfXTrnFAlIaUUpRoFU0MAWgWR0CpUjKebutwdX2UKGgGaAloD0MIXd+HgwT5b0CUhpRSlGgVS/poFkdAqVKQ2ycCo3V9lChoBmgJaA9DCMFz7+ESMm1AlIaUUpRoFU0dAWgWR0CpUsz5ftx/dX2UKGgGaAloD0MIj1N0JJeOcECUhpRSlGgVTSEBaBZHQKlS85Yoy9F1fZQoaAZoCWgPQwiLTpZar5JzQJSGlFKUaBVNMwFoFkdAqVLoLThHb3V9lChoBmgJaA9DCAQ8aeEycW5AlIaUUpRoFUv1aBZHQKlS8/etSyd1fZQoaAZoCWgPQwil942v/W1yQJSGlFKUaBVNugFoFkdAqVMjGaQV9HV9lChoBmgJaA9DCPc7FAU6zXBAlIaUUpRoFUviaBZHQKlTQC4Bmwt1fZQoaAZoCWgPQwgcXDrm/I1wQJSGlFKUaBVL5GgWR0CpU4YsVclgdX2UKGgGaAloD0MIqiheZW1pcUCUhpRSlGgVTQgBaBZHQKlT7IZIg/11fZQoaAZoCWgPQwhpdAexMwtHQJSGlFKUaBVL2mgWR0CpVYJZ4fOldX2UKGgGaAloD0MImDRG6+h9cECUhpRSlGgVS/hoFkdAqVZIHVwxWXV9lChoBmgJaA9DCKRS7Ghcs3BAlIaUUpRoFU0IAWgWR0CpVocsMAmzdX2UKGgGaAloD0MIHuG04EUcb0CUhpRSlGgVTQ4BaBZHQKlWr0bLlmx1fZQoaAZoCWgPQwhSSZ2AJqZxQJSGlFKUaBVNGwFoFkdAqVatqpLmIXV9lChoBmgJaA9DCFtDqb0Io3BAlIaUUpRoFU0SAWgWR0CpVt5IH1OCdX2UKGgGaAloD0MI9IjRc8s1cECUhpRSlGgVTQMBaBZHQKlX1889wFV1fZQoaAZoCWgPQwgyrU1je8xuQJSGlFKUaBVNDwFoFkdAqVfd7a7EpHV9lChoBmgJaA9DCDAvwD76ZnJAlIaUUpRoFU0VAWgWR0CpV/hgmZ3LdX2UKGgGaAloD0MI1ZY6yOsacECUhpRSlGgVTRkBaBZHQKlX5mRNh3J1fZQoaAZoCWgPQwg4oKUr2BpxQJSGlFKUaBVNAgFoFkdAqVgG8h9srXV9lChoBmgJaA9DCMpv0cnSxm1AlIaUUpRoFU0fAWgWR0CpWBzEaVD8dX2UKGgGaAloD0MI9bnaiv3/cECUhpRSlGgVTTwBaBZHQKlYUCnxaxJ1fZQoaAZoCWgPQwh4JclzfQpyQJSGlFKUaBVNBgFoFkdAqVhtAAyVOnV9lChoBmgJaA9DCA3BcRk3J3JAlIaUUpRoFU1ZAWgWR0CpWHZ6MR6GdX2UKGgGaAloD0MIC9KMRdOfcECUhpRSlGgVTQEBaBZHQKlYvcnmaH91fZQoaAZoCWgPQwhHPq946rxyQJSGlFKUaBVNBwFoFkdAqVpThHbypnV9lChoBmgJaA9DCNOlf0lqG3FAlIaUUpRoFUvaaBZHQKlahGBnSOR1fZQoaAZoCWgPQwiEZte9FaFxQJSGlFKUaBVNAQFoFkdAqVrou/UONHV9lChoBmgJaA9DCF+4c2GkNXFAlIaUUpRoFUvwaBZHQKla8B1cMVl1fZQoaAZoCWgPQwj7A+W2ff9RQJSGlFKUaBVLu2gWR0CpWz4aHbh4dX2UKGgGaAloD0MIIXU7+4p2cUCUhpRSlGgVS/xoFkdAqVtSH9FWn3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a0d45f80eb311dfe1b49a0f6509b7199c2ec9a8ed6b563d07fcc991b59f782a
|
3 |
+
size 229989
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 271.2993740455868, "std_reward": 16.00151296980218, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-15T08:52:18.188368"}
|
test1.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b194f2b122c2af0d8a7385196bc97580c3585211e07a2817daedaa5428a380cd
|
3 |
+
size 144004
|
test1/data
CHANGED
@@ -47,7 +47,7 @@
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,13 +69,13 @@
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652603999.2244782,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZAUD0bQ5+8EImBPSojHj2rYR++JtXyPQAAgD8AAIA/5ngMPcO5VLobTdK3Hv3IssARgzj9g/c2AACAPwAAgD/6kSa+UCSYP9Yx+b6mDwe/e0hhvg+Ssb0AAAAAAAAAAE3eqT2kVWG7eqyovKd8tzyUHIU8sDGbvQAAAAAAAIA/zeCAvD0bS7vTx1Y+hcYrvr+snDyEAwm/AAAAAAAAgD9mnDg9uM62u6MZU71FPpg84rsDPW3NgL0AAIA/AACAP5rp9bpx61G7VVaPvpUWljz9z7c8lq2AvQAAAAAAAIA/PURWvnCygz+mSFa+01Tyvl+shb4mfV48AAAAAAAAAAAaXmG9TNymPwOKEr+xCyO/8NhwuwK6Jr4AAAAAAAAAAAAkujtvdJ8/pnZePQlFHb8YrSo8bYH2ugAAAAAAAAAAmjOOPJYTcD35MCg+VwlNvvyC1TyFbzO9AAAAAAAAAABm8/s8/BJ8PR6qlj1zRTm+MjWlPYJZPT0AAAAAAAAAAKYeXT4gPks/Zv0fPnZnFr/grFo+5Tf6OwAAAAAAAAAAmqKIvFyDB7xiFRS8G8KUPBabXT3YNXi9AACAPwAAgD/tOkC+eqq3P8IXLL+7ZKO+p9xIvqKE0L0AAAAAAAAAADPClbz25Fq64ufmO7QezLWfLxm5Zna4tAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVXhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIL/mf/N1AckCUhpRSlIwBbJRNDwGMAXSUR0CpL5pvo/zKdX2UKGgGaAloD0MITBdi9QfGckCUhpRSlGgVTUwBaBZHQKkwTHU+cH51fZQoaAZoCWgPQwga/P1iNrNxQJSGlFKUaBVNCwFoFkdAqTB5ew9q13V9lChoBmgJaA9DCNY4m44ADEVAlIaUUpRoFUv5aBZHQKkxXgqmTDB1fZQoaAZoCWgPQwiFsBpL2KpuQJSGlFKUaBVNAQFoFkdAqTGlrylN13V9lChoBmgJaA9DCDdQ4J38Tm5AlIaUUpRoFU0cAWgWR0CpMe1bA1vVdX2UKGgGaAloD0MIHxFTIommcUCUhpRSlGgVTR0BaBZHQKkyNxFy7wt1fZQoaAZoCWgPQwh+qDRiZgxwQJSGlFKUaBVNPAFoFkdAqTJtMTN+s3V9lChoBmgJaA9DCBpOmZtvKnBAlIaUUpRoFU0DAWgWR0CpMuoakyk9dX2UKGgGaAloD0MIHm6HhgW5cUCUhpRSlGgVTRUBaBZHQKkzazv7WNF1fZQoaAZoCWgPQwh+OEiIMjpzQJSGlFKUaBVNLwFoFkdAqTPYMx46fnV9lChoBmgJaA9DCOi/B68dhnJAlIaUUpRoFU0gAWgWR0CpM+Y9ovi+dX2UKGgGaAloD0MI6kKs/khHckCUhpRSlGgVS+VoFkdAqTQeKXOW0XV9lChoBmgJaA9DCEsEqn8Q23FAlIaUUpRoFU0TAWgWR0CpNDDHOryUdX2UKGgGaAloD0MIIjfDDXgdcECUhpRSlGgVTSMBaBZHQKk0drzGxUx1fZQoaAZoCWgPQwjkolpEFFFNQJSGlFKUaBVLumgWR0CpNXIGQjlgdX2UKGgGaAloD0MIsB9ig4UTcECUhpRSlGgVTQkBaBZHQKk1aPlMh5h1fZQoaAZoCWgPQwj7zi9K0BpsQJSGlFKUaBVNEQNoFkdAqTWZQ53kgnV9lChoBmgJaA9DCLfT1oig4XJAlIaUUpRoFU0MAWgWR0CpNZ6xX4j9dX2UKGgGaAloD0MIl8rbEU7tcECUhpRSlGgVS/ZoFkdAqTZHMW43FXV9lChoBmgJaA9DCPcgBORL7nBAlIaUUpRoFU0RAWgWR0CpNofT9bX6dX2UKGgGaAloD0MIHsU56uhmbkCUhpRSlGgVS99oFkdAqTaMERrad3V9lChoBmgJaA9DCKSJd4BnM3JAlIaUUpRoFU3IAWgWR0CpNxB8IAwPdX2UKGgGaAloD0MIN8e5TbhXcUCUhpRSlGgVS+JoFkdAqTcKay8jA3V9lChoBmgJaA9DCD3WjAxyjW1AlIaUUpRoFU0nAWgWR0CpN57ZFocrdX2UKGgGaAloD0MIZcdGIF5hRUCUhpRSlGgVS7ZoFkdAqTe8wg1WKnV9lChoBmgJaA9DCHsUrkfhM25AlIaUUpRoFUv8aBZHQKk3+l+EytV1fZQoaAZoCWgPQwg8hzJUxRVwQJSGlFKUaBVL8GgWR0CpOCv7m+0xdX2UKGgGaAloD0MI+62dKIkLbUCUhpRSlGgVS/VoFkdAqTiUf3evZHV9lChoBmgJaA9DCOTZ5VtfV3BAlIaUUpRoFU0WAWgWR0CpOOXfhuO0dX2UKGgGaAloD0MISDKrd3iEckCUhpRSlGgVTQoBaBZHQKk44ZYPoV51fZQoaAZoCWgPQwiNCwdCMg1uQJSGlFKUaBVNBgFoFkdAqToeizsyBXV9lChoBmgJaA9DCJASu7a36HFAlIaUUpRoFU0cAWgWR0CpOo3J5mh/dX2UKGgGaAloD0MIxxFr8amGckCUhpRSlGgVTRABaBZHQKk6jjPOY6Z1fZQoaAZoCWgPQwhfzmxX6NFGQJSGlFKUaBVLwmgWR0CpOpgKF7D3dX2UKGgGaAloD0MI7iHhe78UcECUhpRSlGgVTRwBaBZHQKk6whg3Lmp1fZQoaAZoCWgPQwiUaMnj6a1wQJSGlFKUaBVNCAFoFkdAqTsT9wWFe3V9lChoBmgJaA9DCDigpStYzW9AlIaUUpRoFUv2aBZHQKk7impEQXh1fZQoaAZoCWgPQwjd0f9yra5yQJSGlFKUaBVNEwFoFkdAqTuHwXqJM3V9lChoBmgJaA9DCBkCgGNPt29AlIaUUpRoFU0WAWgWR0CpSSmvGIbgdX2UKGgGaAloD0MItXBZhc1sS0CUhpRSlGgVS89oFkdAqUlTK1XvIHV9lChoBmgJaA9DCLr0L0llam1AlIaUUpRoFU0QAWgWR0CpSjV2zOX3dX2UKGgGaAloD0MI0o2wqIi7c0CUhpRSlGgVS/5oFkdAqUpQekpI+XV9lChoBmgJaA9DCIfguIybSnFAlIaUUpRoFU0gAWgWR0CpSmJ1aGHpdX2UKGgGaAloD0MIbwwBwDHycUCUhpRSlGgVS/hoFkdAqUqem78Nx3V9lChoBmgJaA9DCH3Qs1k1v3FAlIaUUpRoFUvpaBZHQKlKpxVAAyV1fZQoaAZoCWgPQwhWZHRAEsdtQJSGlFKUaBVL/2gWR0CpSwLCvX9SdX2UKGgGaAloD0MI9vBlokiZckCUhpRSlGgVTRABaBZHQKlMkqYJE6V1fZQoaAZoCWgPQwii1ckZCuZtQJSGlFKUaBVL/2gWR0CpTKi3XqZ/dX2UKGgGaAloD0MIa54j8p2icECUhpRSlGgVTQQBaBZHQKlMzDKHO8l1fZQoaAZoCWgPQwibjgBulrpuQJSGlFKUaBVL+WgWR0CpTRoXj2i+dX2UKGgGaAloD0MIA5ZcxeL2a0CUhpRSlGgVS+BoFkdAqU0p3cHnlnV9lChoBmgJaA9DCOdSXFU2I3JAlIaUUpRoFUvoaBZHQKlNRAymALB1fZQoaAZoCWgPQwjD76Zb9kNyQJSGlFKUaBVNIgFoFkdAqU1TqbBoEnV9lChoBmgJaA9DCAEXZMtydG9AlIaUUpRoFUv8aBZHQKlNn5qubI91fZQoaAZoCWgPQwg7cw8J31NwQJSGlFKUaBVNJAFoFkdAqU2MJrtVrHV9lChoBmgJaA9DCOG3IcZrdVJAlIaUUpRoFUu+aBZHQKlNz2ll9Sd1fZQoaAZoCWgPQwi5UWStodxvQJSGlFKUaBVNAwFoFkdAqU3r2pQ1rXV9lChoBmgJaA9DCKfLYmJzdHJAlIaUUpRoFUvpaBZHQKlOTxWDHwR1fZQoaAZoCWgPQwj/If32dX9wQJSGlFKUaBVNCwFoFkdAqU7/Fm4Aj3V9lChoBmgJaA9DCJMdG4F40HFAlIaUUpRoFU0BAWgWR0CpTyVv/BFedX2UKGgGaAloD0MIzqW4qqywcECUhpRSlGgVTQwBaBZHQKlPS1fmcON1fZQoaAZoCWgPQwhJLZRMTutyQJSGlFKUaBVNCgFoFkdAqVGU1hsqKHV9lChoBmgJaA9DCB/2QgHbOm9AlIaUUpRoFU0hAWgWR0CpUd0PYnOTdX2UKGgGaAloD0MI7C5QUqCeckCUhpRSlGgVTRwBaBZHQKlR17Z39rJ1fZQoaAZoCWgPQwiDMLd7+eFyQJSGlFKUaBVNBQFoFkdAqVHk8aGYbHV9lChoBmgJaA9DCBAf2PGfanFAlIaUUpRoFUvjaBZHQKlR+O+ZgG91fZQoaAZoCWgPQwhOgGH5sx9yQJSGlFKUaBVNDAFoFkdAqVH5cAzYVnV9lChoBmgJaA9DCCL6tfXTrnFAlIaUUpRoFU0MAWgWR0CpUjKebutwdX2UKGgGaAloD0MIXd+HgwT5b0CUhpRSlGgVS/poFkdAqVKQ2ycCo3V9lChoBmgJaA9DCMFz7+ESMm1AlIaUUpRoFU0dAWgWR0CpUsz5ftx/dX2UKGgGaAloD0MIj1N0JJeOcECUhpRSlGgVTSEBaBZHQKlS85Yoy9F1fZQoaAZoCWgPQwiLTpZar5JzQJSGlFKUaBVNMwFoFkdAqVLoLThHb3V9lChoBmgJaA9DCAQ8aeEycW5AlIaUUpRoFUv1aBZHQKlS8/etSyd1fZQoaAZoCWgPQwil942v/W1yQJSGlFKUaBVNugFoFkdAqVMjGaQV9HV9lChoBmgJaA9DCPc7FAU6zXBAlIaUUpRoFUviaBZHQKlTQC4Bmwt1fZQoaAZoCWgPQwgcXDrm/I1wQJSGlFKUaBVL5GgWR0CpU4YsVclgdX2UKGgGaAloD0MIqiheZW1pcUCUhpRSlGgVTQgBaBZHQKlT7IZIg/11fZQoaAZoCWgPQwhpdAexMwtHQJSGlFKUaBVL2mgWR0CpVYJZ4fOldX2UKGgGaAloD0MImDRG6+h9cECUhpRSlGgVS/hoFkdAqVZIHVwxWXV9lChoBmgJaA9DCKRS7Ghcs3BAlIaUUpRoFU0IAWgWR0CpVocsMAmzdX2UKGgGaAloD0MIHuG04EUcb0CUhpRSlGgVTQ4BaBZHQKlWr0bLlmx1fZQoaAZoCWgPQwhSSZ2AJqZxQJSGlFKUaBVNGwFoFkdAqVatqpLmIXV9lChoBmgJaA9DCFtDqb0Io3BAlIaUUpRoFU0SAWgWR0CpVt5IH1OCdX2UKGgGaAloD0MI9IjRc8s1cECUhpRSlGgVTQMBaBZHQKlX1889wFV1fZQoaAZoCWgPQwgyrU1je8xuQJSGlFKUaBVNDwFoFkdAqVfd7a7EpHV9lChoBmgJaA9DCDAvwD76ZnJAlIaUUpRoFU0VAWgWR0CpV/hgmZ3LdX2UKGgGaAloD0MI1ZY6yOsacECUhpRSlGgVTRkBaBZHQKlX5mRNh3J1fZQoaAZoCWgPQwg4oKUr2BpxQJSGlFKUaBVNAgFoFkdAqVgG8h9srXV9lChoBmgJaA9DCMpv0cnSxm1AlIaUUpRoFU0fAWgWR0CpWBzEaVD8dX2UKGgGaAloD0MI9bnaiv3/cECUhpRSlGgVTTwBaBZHQKlYUCnxaxJ1fZQoaAZoCWgPQwh4JclzfQpyQJSGlFKUaBVNBgFoFkdAqVhtAAyVOnV9lChoBmgJaA9DCA3BcRk3J3JAlIaUUpRoFU1ZAWgWR0CpWHZ6MR6GdX2UKGgGaAloD0MIC9KMRdOfcECUhpRSlGgVTQEBaBZHQKlYvcnmaH91fZQoaAZoCWgPQwhHPq946rxyQJSGlFKUaBVNBwFoFkdAqVpThHbypnV9lChoBmgJaA9DCNOlf0lqG3FAlIaUUpRoFUvaaBZHQKlahGBnSOR1fZQoaAZoCWgPQwiEZte9FaFxQJSGlFKUaBVNAQFoFkdAqVrou/UONHV9lChoBmgJaA9DCF+4c2GkNXFAlIaUUpRoFUvwaBZHQKla8B1cMVl1fZQoaAZoCWgPQwj7A+W2ff9RQJSGlFKUaBVLu2gWR0CpWz4aHbh4dX2UKGgGaAloD0MIIXU7+4p2cUCUhpRSlGgVS/xoFkdAqVtSH9FWn3VlLg=="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 248,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
test1/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84829
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44717f58d7b20c3c647a8618bf6deef5d5772707d8e4f8021d5bae76a6cbbcce
|
3 |
size 84829
|
test1/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb5162ebe6176a2580b1c8b3309b64a11a441f2c4d7aeeba10348115531610c6
|
3 |
size 43201
|