--- language: - gl license: apache-2.0 base_model: openai/whisper-base tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Base Galician results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_13_0 gl type: mozilla-foundation/common_voice_13_0 config: gl split: test args: gl metrics: - name: Wer type: wer value: 17.290976821192054 --- # Whisper Base Galician This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the mozilla-foundation/common_voice_13_0 gl dataset. It achieves the following results on the evaluation set: - Loss: 0.4360 - Wer: 17.2910 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.372 | 10.0 | 1000 | 0.4173 | 21.0023 | | 0.1352 | 20.0 | 2000 | 0.3982 | 18.3620 | | 0.0638 | 30.0 | 3000 | 0.4175 | 17.8842 | | 0.0371 | 40.0 | 4000 | 0.4310 | 17.4721 | | 0.0279 | 50.0 | 5000 | 0.4360 | 17.2910 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1