--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - medical-imaging - chest-xray - tumor-detection - generated_from_trainer metrics: - accuracy model-index: - name: vit-xray-tumor results: [] --- # vit-xray-tumor This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the chest-xray-tumor dataset. It achieves the following results on the evaluation set: - Loss: 0.2989 - Accuracy: 0.9574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.5283 | 3.6765 | 125 | 0.2948 | 0.9606 | | 0.516 | 7.3529 | 250 | 0.2843 | 0.9601 | | 0.4878 | 11.0294 | 375 | 0.2756 | 0.9601 | | 0.459 | 14.7059 | 500 | 0.2801 | 0.9601 | | 0.4462 | 18.3824 | 625 | 0.2761 | 0.9595 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3