pq_cache_9 / README.md
1shoomun's picture
Updated Weights
36ec41f verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:11442
  - loss:MultipleNegativesRankingLoss
  - loss:CosineSimilarityLoss
  - loss:ContrastiveLoss
base_model: jinaai/jina-embedding-b-en-v1
widget:
  - source_sentence: What are the underperforming funds in my portfolio?
    sentences:
      - Switch my stock portfolio with mutual funds
      - List me cheapest funds
      - Which of my funds aren't doing well?
  - source_sentence: Mera score dosto ke hisab se kitna accha hai?
    sentences:
      - Mera score mere dosto ke hisab se kitna jyada acha hai?
      - What are others like me investing in?
      - Show my funds portfolio
  - source_sentence: Am I paying too much in fees for my investments?
    sentences:
      - How much more am I paying in fees across my investments?
      - What is my market cap allocation?
      - What are my investments?
  - source_sentence: Can you check if my investments will increase in value long-term?
    sentences:
      - Do you have any insights on my portfolio
      - Can you tell me if my investments will grow well in the long run?
      - What is my asset allocation?
  - source_sentence: What was the annual performance of my portfolio last year?
    sentences:
      - Need to change my risk appetite
      - I want to refresh my portfolio
      - What is my concentration risk in stocks
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: SentenceTransformer based on jinaai/jina-embedding-b-en-v1
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: test eval
          type: test-eval
        metrics:
          - type: cosine_accuracy@1
            value: 0.8601036269430051
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9792746113989638
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 1
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8601036269430051
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32642487046632124
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19999999999999998
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09999999999999999
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8601036269430051
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9792746113989638
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 1
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 1
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9394665325932218
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9189119170984456
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9189119170984456
            name: Cosine Map@100

SentenceTransformer based on jinaai/jina-embedding-b-en-v1

This is a sentence-transformers model finetuned from jinaai/jina-embedding-b-en-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: jinaai/jina-embedding-b-en-v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: T5EncoderModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'What was the annual performance of my portfolio last year?',
    'I want to refresh my portfolio',
    'Need to change my risk appetite',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.8601
cosine_accuracy@3 0.9793
cosine_accuracy@5 1.0
cosine_accuracy@10 1.0
cosine_precision@1 0.8601
cosine_precision@3 0.3264
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.8601
cosine_recall@3 0.9793
cosine_recall@5 1.0
cosine_recall@10 1.0
cosine_ndcg@10 0.9395
cosine_mrr@10 0.9189
cosine_map@100 0.9189

Training Details

Training Datasets

Unnamed Dataset

  • Size: 1,907 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 4 tokens
    • mean: 11.28 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 10.0 tokens
    • max: 33 tokens
    • min: 1.0
    • mean: 1.0
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    how many commodities do I have right now? how much commodities do I hold? 1.0
    Can you tell me my top sector investment? Which sector do I invest most in? 1.0
    Look for funds that fit my stock holdings Explore funds that match my stock portfolio 1.0
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Unnamed Dataset

  • Size: 1,907 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 4 tokens
    • mean: 11.28 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 9.93 tokens
    • max: 33 tokens
    • min: 1.0
    • mean: 1.0
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    Can you tell me my least performing investments? What are my worst performing holdings 1.0
    Sort my portfolio by assets under management Sort my investments based on AUM 1.0
    How will this news affect my investments? How does this news affect my portfolio? 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Unnamed Dataset

  • Size: 7,628 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 4 tokens
    • mean: 11.15 tokens
    • max: 26 tokens
    • min: 5 tokens
    • mean: 8.94 tokens
    • max: 33 tokens
    • min: 0.0
    • mean: 0.24
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    How much of my portfolio is in X? What is my concentration risk in stocks 0.0
    Can I switch my stocks for mutual funds? Can I exchange my stocks for mutual funds? 1.0
    Please break down my holdings in X. I want to refresh my portfolio 0.0
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 15
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 15
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss test-eval_cosine_ndcg@10
1.0 180 - 0.8971
2.0 360 - 0.9210
2.7778 500 0.1444 0.9258
3.0 540 - 0.9275
4.0 720 - 0.9298
5.0 900 - 0.9368
5.5556 1000 0.0916 0.9395

Framework Versions

  • Python: 3.10.16
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.7.0
  • Accelerate: 1.6.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}