Molecule Detection YOLO in MolParser

From paper: "MolParser: End-to-end Visual Recognition of Molecule Structures in the Wild" (ICCV2025 under review)

We provide several ultralytics YOLO11 weights for molecule detection with different size & input resolution.

image/png

General molecule structure detection models

moldet_yolo11[size]_640_general.pt

YOLO11 weights trained on 35k human annotated image crops and 100k generated images

  • 640x640 input resolution
  • support handwritten molecules
  • multiscale input (inputs can be single/multiple molecular cutouts, reaction or table cutouts, or single-page PDF images)

Warning: For single-molecule input (used as a classification model), appropriate padding can be added to enhance the performance.

Result in private testing:

Model Size mAP50 mAP50-95 Speed (T4 TensorRT10)
n 0.9581 0.8524 1.5 ± 0.0 ms
s 0.9652 0.8704 2.5 ± 0.1 ms
m 0.9686 0.8736 4.7 ± 0.1 ms
l 0.9891 0.9028 6.2 ± 0.1 ms

usage:

from ultralytics import YOLO
model = YOLO("moldet_yolo11l_640_general.pt")
model.predict("path/to/image.png", save=True, imgsz=640, conf=0.5)

PDF molecule structure detection models

moldet_yolo11[size]_960_doc.pt

YOLO11 weights trained on 26k human annotated PDF pages (patents, papers, and books)

  • 960x960 input resolution
  • prefer single page PDF image input
  • better in small molecule detection

Warning: It is recommended to use MuPDF to render PDF pages at more than 144dpi.

Result in private testing:

Model Size mAP50 mAP50-95 Speed (T4 TensorRT10)
n 0.9871 0.8732 3.1 ± 0.0 ms
s 0.9851 0.8824 5.5 ± 0.1 ms
m 0.9867 0.8917 9.9 ± 0.2 ms
l 0.9913 0.9011 13.1 ± 0.3 ms

usage:

from ultralytics import YOLO
model = YOLO("moldet_yolo11l_960_doc.pt")
model.predict("path/to/pdf_page_image.png", save=True, imgsz=960, conf=0.5)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support