Molecule Detection YOLO in MolParser
From paper: "MolParser: End-to-end Visual Recognition of Molecule Structures in the Wild" (ICCV2025 under review)
We provide several ultralytics YOLO11 weights for molecule detection with different size & input resolution.
General molecule structure detection models
moldet_yolo11[size]_640_general.pt
YOLO11 weights trained on 35k human annotated image crops and 100k generated images
- 640x640 input resolution
- support handwritten molecules
- multiscale input (inputs can be single/multiple molecular cutouts, reaction or table cutouts, or single-page PDF images)
Warning: For single-molecule input (used as a classification model), appropriate padding can be added to enhance the performance.
Result in private testing:
Model Size | mAP50 | mAP50-95 | Speed (T4 TensorRT10) |
---|---|---|---|
n | 0.9581 | 0.8524 | 1.5 ± 0.0 ms |
s | 0.9652 | 0.8704 | 2.5 ± 0.1 ms |
m | 0.9686 | 0.8736 | 4.7 ± 0.1 ms |
l | 0.9891 | 0.9028 | 6.2 ± 0.1 ms |
usage:
from ultralytics import YOLO
model = YOLO("moldet_yolo11l_640_general.pt")
model.predict("path/to/image.png", save=True, imgsz=640, conf=0.5)
PDF molecule structure detection models
moldet_yolo11[size]_960_doc.pt
YOLO11 weights trained on 26k human annotated PDF pages (patents, papers, and books)
- 960x960 input resolution
- prefer single page PDF image input
- better in small molecule detection
Warning: It is recommended to use MuPDF to render PDF pages at more than 144dpi.
Result in private testing:
Model Size | mAP50 | mAP50-95 | Speed (T4 TensorRT10) |
---|---|---|---|
n | 0.9871 | 0.8732 | 3.1 ± 0.0 ms |
s | 0.9851 | 0.8824 | 5.5 ± 0.1 ms |
m | 0.9867 | 0.8917 | 9.9 ± 0.2 ms |
l | 0.9913 | 0.9011 | 13.1 ± 0.3 ms |
usage:
from ultralytics import YOLO
model = YOLO("moldet_yolo11l_960_doc.pt")
model.predict("path/to/pdf_page_image.png", save=True, imgsz=960, conf=0.5)
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support