|
import math |
|
from typing import Dict, List, Optional, Tuple, Union |
|
|
|
import PIL.Image |
|
import numpy as np |
|
import torch |
|
from flash_attn import flash_attn_varlen_func |
|
from flash_attn.layers.rotary import apply_rotary_emb |
|
from torch import Tensor, nn |
|
from torch.nn import functional as F |
|
from transformers import ( |
|
AutoConfig, |
|
AutoImageProcessor, |
|
AutoModel, |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
) |
|
from transformers.activations import ACT2FN |
|
from transformers.generation.utils import GenerateOutput |
|
from transformers.modeling_outputs import BaseModelOutputWithNoAttention |
|
from transformers.modeling_utils import PreTrainedModel |
|
|
|
from .configuration_ovis2_5 import Siglip2NavitConfig, Ovis2_5_Config |
|
|
|
IMAGE_PLACEHOLDER = "<image>" |
|
IMAGE_PLACEHOLDER_ID = -200 |
|
VIDEO_PLACEHOLDER = "<video>" |
|
VIDEO_PLACEHOLDER_ID = -201 |
|
|
|
VISUAL_ATOM_ID = -300 |
|
INDICATOR_IDS = [-301, -302, -303, -304] |
|
|
|
|
|
class VisionRotaryEmbedding(nn.Module): |
|
def __init__(self, dim: int, theta: float = 10000.0) -> None: |
|
super().__init__() |
|
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
def forward(self, seqlen: int) -> torch.Tensor: |
|
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.outer(seq, self.inv_freq) |
|
return freqs |
|
|
|
|
|
class Siglip2VisionEmbeddings(nn.Module): |
|
def __init__(self, config: Siglip2NavitConfig): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.patch_size = config.patch_size |
|
self.image_size = config.image_size |
|
self.num_patches = config.num_patches |
|
self.preserve_original_pe = config.preserve_original_pe |
|
self.hidden_stride = config.hidden_stride |
|
|
|
|
|
|
|
if self.num_patches > 0: |
|
self.patch_embedding = nn.Linear( |
|
in_features=config.num_channels * self.patch_size * self.patch_size, |
|
out_features=self.embed_dim, |
|
) |
|
if self.preserve_original_pe: |
|
self.position_embedding_size = int(self.num_patches**0.5) |
|
self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim) |
|
|
|
else: |
|
self.patch_embedding = nn.Conv2d( |
|
in_channels=config.num_channels, |
|
out_channels=self.embed_dim, |
|
kernel_size=self.patch_size, |
|
stride=self.patch_size, |
|
padding="valid", |
|
) |
|
if self.preserve_original_pe: |
|
self.num_patches = (self.image_size // self.patch_size) ** 2 |
|
self.position_embedding_size = self.image_size // self.patch_size |
|
self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim) |
|
|
|
@staticmethod |
|
def resize_positional_embeddings( |
|
positional_embeddings: torch.Tensor, |
|
spatial_shapes: torch.LongTensor, |
|
max_length: int, |
|
) -> torch.Tensor: |
|
""" |
|
Resize positional embeddings to image-specific size and pad to a fixed size. |
|
|
|
Args: |
|
positional_embeddings (`torch.Tensor`): |
|
Position embeddings of shape (height, width, embed_dim) |
|
spatial_shapes (`torch.LongTensor`): |
|
Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to |
|
max_length (`int`): |
|
Maximum length of the positional embeddings to pad resized positional embeddings to |
|
|
|
Returns: |
|
`torch.Tensor`: Embeddings of shape (batch_size, max_length, embed_dim) |
|
""" |
|
batch_size = spatial_shapes.shape[0] |
|
embed_dim = positional_embeddings.shape[-1] |
|
source_dtype = positional_embeddings.dtype |
|
|
|
resulted_positional_embeddings = torch.empty( |
|
(batch_size, max_length, embed_dim), |
|
device=positional_embeddings.device, |
|
dtype=source_dtype, |
|
) |
|
|
|
|
|
positional_embeddings = positional_embeddings.permute(2, 0, 1).unsqueeze(0) |
|
|
|
|
|
if positional_embeddings.device.type == "cpu": |
|
positional_embeddings = positional_embeddings.to(torch.float32) |
|
|
|
for i in range(batch_size): |
|
|
|
height, width = spatial_shapes[i] |
|
resized_embeddings = F.interpolate( |
|
positional_embeddings, |
|
size=(height, width), |
|
mode="bilinear", |
|
align_corners=False, |
|
antialias=True, |
|
) |
|
|
|
|
|
resized_embeddings = resized_embeddings.reshape(embed_dim, height * width).transpose(0, 1) |
|
|
|
|
|
resized_embeddings = resized_embeddings.to(source_dtype) |
|
|
|
resulted_positional_embeddings[i, : height * width] = resized_embeddings |
|
resulted_positional_embeddings[i, height * width :] = resized_embeddings[0] |
|
|
|
return resulted_positional_embeddings |
|
|
|
def forward(self, pixel_values: torch.FloatTensor, |
|
grid_thws: Optional[torch.LongTensor] = None) -> torch.Tensor: |
|
""" |
|
Args: |
|
pixel_values (`torch.FloatTensor`): |
|
Pixel values of shape (num_patches, num_channels * temporal_patch_size * patch_size * patch_size) |
|
grid_thws: (`torch.LongTensor`): |
|
grid shape (num_patches, 3) |
|
""" |
|
|
|
|
|
target_dtype = self.patch_embedding.weight.dtype |
|
if isinstance(self.patch_embedding, nn.Linear): |
|
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) |
|
elif isinstance(self.patch_embedding, nn.Conv2d): |
|
pixel_values = pixel_values.view(-1, self.config.num_channels * self.config.temporal_patch_size, self.patch_size, |
|
self.patch_size) |
|
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) |
|
patch_embeds = patch_embeds.reshape(-1, self.embed_dim) |
|
|
|
|
|
if self.preserve_original_pe: |
|
assert grid_thws is not None |
|
pos_embed_new = torch.zeros_like(patch_embeds) |
|
ori_h = ori_w = self.position_embedding_size |
|
positional_embeddings = self.position_embedding.weight.reshape( |
|
self.position_embedding_size, self.position_embedding_size, -1 |
|
).unsqueeze(0).permute(0,3,1,2) |
|
|
|
cnt = 0 |
|
for t, h, w in grid_thws: |
|
thw = t * h * w |
|
pe = F.interpolate(positional_embeddings, size=(h, w), mode='bicubic', align_corners=False) |
|
pe = pe.permute(0, 2, 3, 1).reshape(1, h * w, -1) |
|
pe = pe[0].repeat(t, 1) |
|
pe = pe.reshape(t, h // self.hidden_stride, self.hidden_stride, w // self.hidden_stride, |
|
self.hidden_stride, -1) |
|
pe = pe.permute(0, 1, 3, 2, 4, 5).reshape(thw, -1) |
|
pos_embed_new[cnt:cnt + thw] = pe |
|
cnt += thw |
|
patch_embeds = patch_embeds + pos_embed_new |
|
|
|
return patch_embeds |
|
|
|
|
|
|
|
def apply_rotary_pos_emb_flashatt( |
|
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
cos = cos.chunk(2, dim=-1)[0].contiguous() |
|
sin = sin.chunk(2, dim=-1)[0].contiguous() |
|
q_embed = apply_rotary_emb(q.float(), cos.float(), sin.float()).type_as(q) |
|
k_embed = apply_rotary_emb(k.float(), cos.float(), sin.float()).type_as(k) |
|
return q_embed, k_embed |
|
|
|
|
|
class Siglip2Attention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.embed_dim // self.num_heads |
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
self.scale = self.head_dim**-0.5 |
|
self.dropout = config.attention_dropout |
|
self.is_causal = False |
|
|
|
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
|
self.use_rope = config.use_rope |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
cu_seqlens: torch.Tensor, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
) -> tuple[torch.Tensor, Optional[torch.Tensor]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
seq_length, embed_dim = hidden_states.shape |
|
|
|
queries = self.q_proj(hidden_states) |
|
keys = self.k_proj(hidden_states) |
|
values = self.v_proj(hidden_states) |
|
|
|
queries = queries.view(seq_length, self.num_heads, self.head_dim) |
|
keys = keys.view(seq_length, self.num_heads, self.head_dim) |
|
values = values.view(seq_length, self.num_heads, self.head_dim) |
|
|
|
if self.use_rope: |
|
cos, sin = position_embeddings |
|
queries, keys = apply_rotary_pos_emb_flashatt(queries.unsqueeze(0), keys.unsqueeze(0), cos, sin) |
|
queries = queries.squeeze(0) |
|
keys = keys.squeeze(0) |
|
|
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() |
|
attn_output = flash_attn_varlen_func(queries, keys, values, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape( |
|
seq_length, -1 |
|
) |
|
attn_output = self.out_proj(attn_output) |
|
return attn_output |
|
|
|
class Siglip2MLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.activation_fn = ACT2FN[config.hidden_act] |
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) |
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.fc1(hidden_states) |
|
hidden_states = self.activation_fn(hidden_states) |
|
hidden_states = self.fc2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class Siglip2EncoderLayer(nn.Module): |
|
def __init__(self, config: Siglip2NavitConfig): |
|
super().__init__() |
|
self.embed_dim = config.hidden_size |
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
self.self_attn = Siglip2Attention(config) |
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
self.mlp = Siglip2MLP(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
cu_seqlens: torch.Tensor, |
|
position_embeddings: torch.Tensor |
|
) -> tuple[torch.FloatTensor]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): |
|
Input to the layer of shape `(batch, seq_len, embed_dim)`. |
|
attention_mask (`torch.FloatTensor`): |
|
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. |
|
output_attentions (`bool`, *optional*, defaults to `False`): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
""" |
|
residual = hidden_states |
|
|
|
hidden_states = self.layer_norm1(hidden_states) |
|
hidden_states = self.self_attn( |
|
hidden_states=hidden_states, |
|
cu_seqlens=cu_seqlens, |
|
position_embeddings=position_embeddings |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
residual = hidden_states |
|
hidden_states = self.layer_norm2(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
return hidden_states |
|
|
|
class Siglip2Encoder(nn.Module): |
|
""" |
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a |
|
[`Siglip2EncoderLayer`]. |
|
|
|
Args: |
|
config: Siglip2NavitConfig |
|
""" |
|
|
|
def __init__(self, config: Siglip2NavitConfig): |
|
super().__init__() |
|
self.config = config |
|
self.layers = nn.ModuleList([Siglip2EncoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
self.rotary_pos_emb = VisionRotaryEmbedding(config.hidden_size // config.num_attention_heads // 2) |
|
self.patch_size = config.patch_size |
|
self.hidden_stride = config.hidden_stride |
|
self.window_size = config.window_size |
|
self.spatial_merge_unit = config.hidden_stride * config.hidden_stride |
|
self.fullatt_block_indexes = None if config.fullatt_block_indexes is None else [int(i) for i in config.fullatt_block_indexes.split('|')] |
|
|
|
|
|
|
|
def rot_pos_emb(self, grid_thw): |
|
pos_ids = [] |
|
for t, h, w in grid_thw: |
|
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w) |
|
hpos_ids = hpos_ids.reshape( |
|
h // self.hidden_stride, |
|
self.hidden_stride, |
|
w // self.hidden_stride, |
|
self.hidden_stride, |
|
) |
|
hpos_ids = hpos_ids.permute(0, 2, 1, 3) |
|
hpos_ids = hpos_ids.flatten() |
|
|
|
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1) |
|
wpos_ids = wpos_ids.reshape( |
|
h // self.hidden_stride, |
|
self.hidden_stride, |
|
w // self.hidden_stride, |
|
self.hidden_stride, |
|
) |
|
wpos_ids = wpos_ids.permute(0, 2, 1, 3) |
|
wpos_ids = wpos_ids.flatten() |
|
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)) |
|
pos_ids = torch.cat(pos_ids, dim=0) |
|
max_grid_size = grid_thw[:, 1:].max() |
|
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size) |
|
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1) |
|
return rotary_pos_emb |
|
|
|
def get_window_index(self, grid_thw): |
|
window_index: list = [] |
|
cu_window_seqlens: list = [0] |
|
window_index_id = 0 |
|
vit_merger_window_size = self.window_size // self.hidden_stride // self.patch_size |
|
|
|
for grid_t, grid_h, grid_w in grid_thw: |
|
llm_grid_h, llm_grid_w = ( |
|
grid_h // self.hidden_stride, |
|
grid_w // self.hidden_stride, |
|
) |
|
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w) |
|
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size |
|
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size |
|
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size |
|
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size |
|
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100) |
|
index_padded = index_padded.reshape( |
|
grid_t, |
|
num_windows_h, |
|
vit_merger_window_size, |
|
num_windows_w, |
|
vit_merger_window_size, |
|
) |
|
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape( |
|
grid_t, |
|
num_windows_h * num_windows_w, |
|
vit_merger_window_size, |
|
vit_merger_window_size, |
|
) |
|
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1) |
|
index_padded = index_padded.reshape(-1) |
|
index_new = index_padded[index_padded != -100] |
|
window_index.append(index_new + window_index_id) |
|
cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1] |
|
cu_window_seqlens.extend(cu_seqlens_tmp.tolist()) |
|
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item() |
|
window_index = torch.cat(window_index, dim=0) |
|
|
|
return window_index, cu_window_seqlens |
|
|
|
|
|
def forward( |
|
self, |
|
inputs_embeds, |
|
grid_thws: torch.Tensor, |
|
output_hidden_states: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]: |
|
r""" |
|
Args: |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert `input_ids` indices into associated vectors |
|
than the model's internal embedding lookup matrix. |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
rotary_pos_emb = self.rot_pos_emb(grid_thws) |
|
window_index, cu_window_seqlens = self.get_window_index(grid_thws) |
|
cu_window_seqlens = torch.tensor( |
|
cu_window_seqlens, |
|
device=inputs_embeds.device, |
|
dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32, |
|
) |
|
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens) |
|
|
|
seq_len, _ = inputs_embeds.size() |
|
inputs_embeds = inputs_embeds.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1) |
|
inputs_embeds = inputs_embeds[window_index, :, :] |
|
inputs_embeds = inputs_embeds.reshape(seq_len, -1) |
|
rotary_pos_emb = rotary_pos_emb.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1) |
|
rotary_pos_emb = rotary_pos_emb[window_index, :, :] |
|
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1) |
|
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) |
|
position_embeddings = (emb.cos(), emb.sin()) |
|
|
|
cu_seqlens = torch.repeat_interleave(grid_thws[:, 1] * grid_thws[:, 2], grid_thws[:, 0]).cumsum( |
|
dim=0, |
|
|
|
|
|
|
|
|
|
dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32, |
|
) |
|
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) |
|
|
|
reverse_indices = torch.argsort(window_index) |
|
encoder_states = () if output_hidden_states else None |
|
|
|
hidden_states = inputs_embeds |
|
for index, block in enumerate(self.layers): |
|
if self.fullatt_block_indexes is None or index in self.fullatt_block_indexes: |
|
cu_seqlens_tmp = cu_seqlens |
|
else: |
|
cu_seqlens_tmp = cu_window_seqlens |
|
if self.gradient_checkpointing and self.training: |
|
hidden_states = self._gradient_checkpointing_func(block.__call__, hidden_states, cu_seqlens_tmp, position_embeddings) |
|
else: |
|
hidden_states = block(hidden_states, cu_seqlens_tmp, position_embeddings) |
|
if output_hidden_states: |
|
hidden_states_ = hidden_states.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1) |
|
encoder_states += (hidden_states_[reverse_indices, :].reshape(seq_len, -1),) |
|
|
|
hidden_states = hidden_states.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1) |
|
hidden_states = hidden_states[reverse_indices, :].reshape(seq_len, -1) |
|
|
|
return hidden_states, encoder_states |
|
|
|
class Siglip2VisionTransformer(nn.Module): |
|
def __init__(self, config: Siglip2NavitConfig): |
|
super().__init__() |
|
self.config = config |
|
embed_dim = config.hidden_size |
|
|
|
self.embeddings = Siglip2VisionEmbeddings(config) |
|
self.encoder = Siglip2Encoder(config) |
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) |
|
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" |
|
|
|
def forward( |
|
self, |
|
pixel_values: torch.FloatTensor, |
|
grid_thws: torch.LongTensor, |
|
output_hidden_states: Optional[bool] = True, |
|
return_dict: Optional[bool] = True, |
|
) -> Union[ |
|
Tuple[torch.Tensor], |
|
Tuple[torch.Tensor, Tuple[torch.Tensor, ...]], |
|
BaseModelOutputWithNoAttention, |
|
]: |
|
r""" |
|
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`): |
|
Tensor containing the spatial dimensions (height, width) of the input images. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
hidden_states = self.embeddings(pixel_values, grid_thws) |
|
|
|
last_hidden_state, hidden_states = self.encoder(hidden_states, grid_thws, output_hidden_states) |
|
last_hidden_state = self.post_layernorm(last_hidden_state) |
|
|
|
if not return_dict: |
|
output = (last_hidden_state,) |
|
output += (hidden_states,) if output_hidden_states else () |
|
return output |
|
|
|
return BaseModelOutputWithNoAttention( |
|
last_hidden_state=last_hidden_state, |
|
hidden_states=hidden_states |
|
) |
|
|
|
class Siglip2PreTrainedModel(PreTrainedModel): |
|
config_class = Siglip2NavitConfig |
|
base_model_prefix = "siglip2_navit" |
|
supports_gradient_checkpointing = True |
|
|
|
_no_split_modules = [ |
|
"Siglip2VisionEmbeddings", |
|
"Siglip2EncoderLayer", |
|
] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = False |
|
_supports_flex_attn = False |
|
_supports_attention_backend = True |
|
|
|
|
|
class Siglip2NavitModel(Siglip2PreTrainedModel): |
|
config_class = Siglip2NavitConfig |
|
main_input_name = "pixel_values" |
|
|
|
def __init__(self, config: Siglip2NavitConfig): |
|
super().__init__(config) |
|
|
|
self.vision_model = Siglip2VisionTransformer(config) |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.vision_model.embeddings.patch_embedding |
|
|
|
def forward( |
|
self, |
|
pixel_values: torch.FloatTensor, |
|
grid_thws: torch.LongTensor, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[ |
|
Tuple[torch.Tensor], |
|
Tuple[torch.Tensor, Tuple[torch.Tensor, ...]], |
|
BaseModelOutputWithNoAttention, |
|
]: |
|
|
|
if output_hidden_states is None: |
|
output_hidden_states = self.config.output_hidden_states |
|
if return_dict is None: |
|
return_dict = self.config.use_return_dict |
|
|
|
return self.vision_model( |
|
pixel_values=pixel_values, |
|
grid_thws=grid_thws, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
class VisualEmbedding(torch.nn.Embedding): |
|
""" |
|
A visual embedding layer that can handle both discrete token IDs (long) and continuous |
|
soft-token probabilities (float). |
|
""" |
|
|
|
def forward(self, visual_tokens: Tensor) -> Tensor: |
|
if visual_tokens.dtype in [torch.int8, torch.int16, torch.int32, torch.int64, torch.long]: |
|
return super().forward(visual_tokens) |
|
|
|
return torch.matmul(visual_tokens, self.weight) |
|
|
|
|
|
class VisualTokenizer(torch.nn.Module): |
|
""" |
|
Tokenizes images or videos into a sequence of continuous visual tokens. |
|
""" |
|
|
|
def __init__(self, vit, visual_vocab_size, image_processor_name_or_path, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.vit = vit |
|
self.image_processor = AutoImageProcessor.from_pretrained(image_processor_name_or_path, do_center_crop=False) |
|
head_dim = visual_vocab_size - len(INDICATOR_IDS) |
|
self.head = torch.nn.Sequential( |
|
torch.nn.Linear(self.vit.config.hidden_size * self.vit.config.hidden_stride ** 2, head_dim, bias=False), |
|
torch.nn.LayerNorm(head_dim) |
|
) |
|
|
|
def _encode(self, pixel_values, grid_thws): |
|
output = self.vit(pixel_values, grid_thws, output_hidden_states=True, return_dict=True) |
|
features = output.hidden_states[-1] |
|
seq_len, _ = features.shape |
|
features = features.reshape(seq_len // (self.vit.config.hidden_stride ** 2), -1) |
|
return features |
|
|
|
|
|
@staticmethod |
|
def smart_resize( |
|
height: int, width: int, factor: int = 28, min_pixels: int = 448 * 448, max_pixels: int = 1344 * 1792 |
|
): |
|
"""Rescales the image so that the following conditions are met: |
|
1. Both dimensions are divisible by 'factor'. |
|
2. The total number of pixels is within ['min_pixels', 'max_pixels']. |
|
3. The aspect ratio is maintained as closely as possible. |
|
""" |
|
if height < factor or width < factor: |
|
if height < width: |
|
width = round(factor / height * width) |
|
height = factor |
|
else: |
|
height = round(factor / width * height) |
|
width = factor |
|
|
|
elif max(height, width) / min(height, width) > 200: |
|
if height > width: |
|
height = 200 * width |
|
else: |
|
width = 200 * height |
|
|
|
h_bar = round(height / factor) * factor |
|
w_bar = round(width / factor) * factor |
|
if h_bar * w_bar > max_pixels: |
|
beta = math.sqrt((height * width) / max_pixels) |
|
h_bar = math.floor(height / beta / factor) * factor |
|
w_bar = math.floor(width / beta / factor) * factor |
|
elif h_bar * w_bar < min_pixels: |
|
beta = math.sqrt(min_pixels / (height * width)) |
|
h_bar = math.ceil(height * beta / factor) * factor |
|
w_bar = math.ceil(width * beta / factor) * factor |
|
return h_bar, w_bar |
|
|
|
def preprocess( |
|
self, |
|
image: Optional[PIL.Image.Image] = None, |
|
video: Optional[List[PIL.Image.Image]] = None, |
|
min_pixels: Optional[int] = None, |
|
max_pixels: Optional[int] = None |
|
): |
|
patch_size = self.vit.config.patch_size |
|
temporal_patch_size = self.vit.config.temporal_patch_size |
|
hidden_stride = self.vit.config.hidden_stride |
|
assert (image is None) ^ (video is None), "Invalid input: expect either image or video" |
|
if image is not None: |
|
images = [image] |
|
else: |
|
images = video |
|
images = [image.convert("RGB") if image.mode != 'RGB' else image for image in images] |
|
width, height = images[0].size |
|
processed_images = [] |
|
for image in images: |
|
resized_height, resized_width = self.smart_resize( |
|
height, |
|
width, |
|
factor=patch_size * hidden_stride, |
|
min_pixels=min_pixels, |
|
max_pixels=max_pixels, |
|
) |
|
new_size = dict(height=resized_height, width=resized_width) |
|
new_image = self.image_processor.preprocess(image, size=new_size, return_tensors="np")['pixel_values'][0] |
|
processed_images.append(new_image) |
|
|
|
patches = np.array(processed_images) |
|
if patches.shape[0] % temporal_patch_size != 0: |
|
repeats = np.repeat(patches[-1][np.newaxis], temporal_patch_size - 1, axis=0) |
|
patches = np.concatenate([patches, repeats], axis=0) |
|
channel = patches.shape[1] |
|
grid_t = patches.shape[0] // temporal_patch_size |
|
grid_h, grid_w = resized_height // patch_size, resized_width // patch_size |
|
grid_thw = torch.tensor([[grid_t, grid_h, grid_w]]) |
|
|
|
patches = patches.reshape( |
|
grid_t, temporal_patch_size, channel, |
|
grid_h // hidden_stride, hidden_stride, patch_size, |
|
grid_w // hidden_stride, hidden_stride, patch_size, |
|
) |
|
patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8) |
|
flatten_patches = patches.reshape( |
|
grid_t * grid_h * grid_w, channel * temporal_patch_size * patch_size * patch_size |
|
) |
|
flatten_patches = torch.tensor(flatten_patches) |
|
|
|
return flatten_patches, grid_thw |
|
|
|
def forward( |
|
self, pixel_values, grid_thws |
|
) -> torch.Tensor: |
|
features = self._encode(pixel_values, grid_thws) |
|
logits = self.head(features) |
|
tokens = torch.softmax(logits, dim=-1, dtype=torch.float32).to(logits.dtype) |
|
|
|
token_len, _ = tokens.shape |
|
padding_tensor = torch.zeros(size=(token_len, len(INDICATOR_IDS)), |
|
dtype=tokens.dtype, |
|
device=tokens.device, |
|
layout=tokens.layout, |
|
requires_grad=False) |
|
tokens = torch.cat((tokens, padding_tensor), dim=1) |
|
return tokens |
|
|
|
|
|
class OvisPreTrainedModel(PreTrainedModel): |
|
config_class = Ovis2_5_Config |
|
base_model_prefix = "ovis2_5" |
|
|
|
|
|
class Ovis2_5(OvisPreTrainedModel): |
|
_supports_flash_attn_2 = True |
|
|
|
def __init__(self, config: Ovis2_5_Config, *inputs, **kwargs): |
|
super().__init__(config, *inputs, **kwargs) |
|
|
|
self.llm = AutoModelForCausalLM.from_config(self.config.llm_config) |
|
assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch" |
|
self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path) |
|
self.visual_tokenizer = VisualTokenizer(vit=AutoModel.from_config(self.config.vit_config), |
|
visual_vocab_size=self.config.visual_vocab_size, |
|
image_processor_name_or_path=self.config.name_or_path) |
|
|
|
self.vte = VisualEmbedding(self.config.visual_vocab_size, self.config.hidden_size, |
|
device=self.visual_tokenizer.vit.device, dtype=self.visual_tokenizer.vit.dtype) |
|
indicator_token_indices = torch.arange( |
|
self.config.visual_vocab_size - len(INDICATOR_IDS), |
|
self.config.visual_vocab_size, |
|
dtype=torch.long |
|
) |
|
self.register_buffer("indicator_token_indices", indicator_token_indices, persistent=False) |
|
|
|
def _merge_modules(modules_list: tuple): |
|
merged_modules = [] |
|
for modules in modules_list: |
|
merged_modules.extend(modules if modules else []) |
|
return merged_modules |
|
|
|
|
|
self._no_split_modules = _merge_modules( |
|
(self.llm._no_split_modules, self.visual_tokenizer.vit._no_split_modules)) |
|
self._skip_keys_device_placement = self.llm._skip_keys_device_placement |
|
self._keep_in_fp32_modules = _merge_modules( |
|
(self.llm._keep_in_fp32_modules, self.visual_tokenizer.vit._keep_in_fp32_modules)) |
|
self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.vit.is_parallelizable)) |
|
self.supports_gradient_checkpointing = True |
|
|
|
def tie_weights(self): |
|
self.llm.tie_weights() |
|
|
|
def get_wte(self): |
|
return self.llm.get_input_embeddings() |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
pixel_values: Optional[torch.Tensor], |
|
grid_thws: Optional[torch.Tensor], |
|
labels: Optional[torch.Tensor] = None, |
|
**kwargs |
|
): |
|
inputs_embeds = self.merge_multimodal( |
|
input_ids=input_ids, |
|
pixel_values=pixel_values, |
|
grid_thws=grid_thws, |
|
) |
|
return self.llm(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs) |
|
|
|
def merge_multimodal( |
|
self, |
|
input_ids: torch.Tensor, |
|
pixel_values: Optional[torch.Tensor], |
|
grid_thws: Optional[torch.Tensor], |
|
): |
|
placeholder_token_mask = torch.lt(input_ids, 0) |
|
multimodal_embeds = self.get_wte()(torch.masked_fill(input_ids, placeholder_token_mask, 0)) |
|
|
|
if pixel_values is not None: |
|
visual_indicator_embeds = self.vte(self.indicator_token_indices).to( |
|
dtype=multimodal_embeds.dtype, device=multimodal_embeds.device |
|
) |
|
visual_tokens = self.visual_tokenizer(pixel_values, grid_thws) |
|
visual_embeds = self.vte(visual_tokens).to(dtype=multimodal_embeds.dtype, device=multimodal_embeds.device) |
|
|
|
for i, indicator_id in enumerate(INDICATOR_IDS): |
|
multimodal_embeds[input_ids == indicator_id] = visual_indicator_embeds[i] |
|
multimodal_embeds[input_ids == VISUAL_ATOM_ID] = visual_embeds |
|
|
|
return multimodal_embeds |
|
|
|
def _merge_inputs( |
|
self, raw_input_ids, placeholder_id, grid_thws, indicator_begin_id, indicator_end_id |
|
): |
|
input_ids = [] |
|
prev_index = 0 |
|
placeholder_indexes = [i for i, v in enumerate(raw_input_ids) if v == placeholder_id] |
|
for placeholder_index, grid_thw in zip(placeholder_indexes, grid_thws): |
|
input_ids.extend(raw_input_ids[prev_index:placeholder_index]) |
|
num_image_atoms = grid_thw.prod().item() |
|
num_image_atoms //= self.visual_tokenizer.vit.config.hidden_stride ** 2 |
|
num_image_atoms //= self.visual_tokenizer.vit.config.temporal_patch_size |
|
input_ids.extend([indicator_begin_id] + [VISUAL_ATOM_ID] * num_image_atoms + [indicator_end_id]) |
|
prev_index = placeholder_index + 1 |
|
input_ids.extend(raw_input_ids[prev_index:]) |
|
return input_ids |
|
|
|
def _tokenize_with_visual_placeholder(self, text): |
|
placeholder = VIDEO_PLACEHOLDER if VIDEO_PLACEHOLDER in text else IMAGE_PLACEHOLDER |
|
placeholder_id = VIDEO_PLACEHOLDER_ID if VIDEO_PLACEHOLDER in text else IMAGE_PLACEHOLDER_ID |
|
chunks = [self.text_tokenizer(chunk, add_special_tokens=False).input_ids for chunk in text.split(placeholder)] |
|
input_ids = chunks[0] |
|
for chunk in chunks[1:]: |
|
input_ids.append(placeholder_id) |
|
input_ids.extend(chunk) |
|
return input_ids |
|
|
|
def preprocess_inputs( |
|
self, |
|
messages: List[Union[str, Dict]], |
|
min_pixels=448 * 448, |
|
max_pixels=1344 * 1792, |
|
add_generation_prompt=True, |
|
enable_thinking=False |
|
): |
|
text = self.text_tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=add_generation_prompt, |
|
enable_thinking=enable_thinking |
|
) |
|
input_ids = self._tokenize_with_visual_placeholder(text) |
|
images = [] |
|
videos = [] |
|
for message in messages: |
|
content = message["content"] |
|
if isinstance(content, list): |
|
images.extend([item["image"] for item in content if item.get("image") is not None]) |
|
videos.extend([item["video"] for item in content if item.get("video") is not None]) |
|
if images and videos: |
|
raise ValueError( |
|
"Multiple visual input data types detected (both image and video provided). " |
|
"This model supports only one type of visual input data at a time. " |
|
"Please provide either image or video, but not both." |
|
) |
|
|
|
pixel_values, grid_thws = None, None |
|
if images: |
|
pixel_values, grid_thws = zip( |
|
*(self.visual_tokenizer.preprocess(image=image, min_pixels=min_pixels, max_pixels=max_pixels) |
|
for image in images) |
|
) |
|
input_ids = self._merge_inputs( |
|
input_ids, IMAGE_PLACEHOLDER_ID, grid_thws, INDICATOR_IDS[0], INDICATOR_IDS[1] |
|
) |
|
pixel_values = torch.cat(pixel_values, dim=0) |
|
grid_thws = torch.cat(grid_thws, dim=0) |
|
elif videos: |
|
assert len(videos) == 1, "only support single video" |
|
pixel_values, grid_thws = self.visual_tokenizer.preprocess( |
|
video=videos[0], min_pixels=min_pixels, max_pixels=max_pixels |
|
) |
|
input_ids = self._merge_inputs( |
|
input_ids, VIDEO_PLACEHOLDER_ID, grid_thws, INDICATOR_IDS[2], INDICATOR_IDS[3] |
|
) |
|
|
|
input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0) |
|
|
|
return input_ids, pixel_values, grid_thws |
|
|
|
def generate( |
|
self, |
|
inputs: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Union[GenerateOutput, torch.LongTensor]: |
|
attention_mask = torch.ne(inputs, self.text_tokenizer.pad_token_id).to(device=inputs.device) |
|
inputs_embeds = self.merge_multimodal( |
|
input_ids=inputs, |
|
pixel_values=kwargs.pop('pixel_values', None), |
|
grid_thws=kwargs.pop('grid_thws', None) |
|
) |
|
return self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs) |
|
|
|
|
|
AutoConfig.register('siglip2_navit', Siglip2NavitConfig) |
|
AutoModel.register(Siglip2NavitConfig, Siglip2NavitModel) |
|
AutoConfig.register("ovis2_5", Ovis2_5_Config) |
|
AutoModelForCausalLM.register(Ovis2_5_Config, Ovis2_5) |
|
|