Axion-Pro-Indic-24B
Model Information
Axion-Pro-Indic-24B is a multilingual, hybrid-reasoning, text-only language model built on Mistral-Small.
This post-trained version delivers exceptional improvements over the base model:
- +20% average improvement on Indian language benchmarks
- +21.6% enhancement on math benchmarks
- +17.6% boost on programming benchmarks
- +86% improvement in romanized Indian language GSM-8K benchmarks (languages ร mathematics intersection).
Key Features
- Hybrid Thinking Mode: Supports both "think" and "non-think" modes.
- Advanced Indic Skills: Post-trained on Indian languages + English, reflecting Indian cultural values.
- Superior Reasoning Capabilities: Outperforms similarly sized models on coding and math benchmarks.
- Seamless Multilingual Experience: Full support for Indic scripts and romanized text.
Quickstart
With Transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "AdvRahul/Axion-Pro-Indic-24B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype="auto", device_map="auto"
)
prompt = "Who are you and what is your purpose on this planet?"
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
enable_thinking=True, # Default True; set False for no-think mode
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(**model_inputs, max_new_tokens=8192)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :].tolist()
output_text = tokenizer.decode(output_ids)
if "</think>" in output_text:
reasoning_content = output_text.split("</think>")[0].rstrip("\n")
content = output_text.split("</think>")[-1].lstrip("\n").rstrip("</s>")
else:
reasoning_content = ""
content = output_text.rstrip("</s>")
print("reasoning content:", reasoning_content)
print("content:", content)
- Downloads last month
- 46
Hardware compatibility
Log In
to view the estimation
5-bit