SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 6 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
matches-match_time |
|
matches-match_result |
|
greet-who_are_you |
|
matches-team_next_match |
|
greet-good_bye |
|
greet-hi |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 1.0 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Ah7med/setfit-football_bootpress_paraph-multi-v2")
# Run inference
preds = model("why do I need you")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 5.2 | 10 |
Label | Training Sample Count |
---|---|
greet-hi | 5 |
greet-who_are_you | 7 |
greet-good_bye | 5 |
matches-team_next_match | 21 |
matches-match_time | 12 |
matches-match_result | 15 |
Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0012 | 1 | 0.1308 | - |
0.0603 | 50 | 0.1596 | - |
0.1206 | 100 | 0.1399 | - |
0.1809 | 150 | 0.089 | - |
0.2413 | 200 | 0.0461 | - |
0.3016 | 250 | 0.026 | - |
0.3619 | 300 | 0.0081 | - |
0.4222 | 350 | 0.0048 | - |
0.4825 | 400 | 0.0039 | - |
0.5428 | 450 | 0.0018 | - |
0.6031 | 500 | 0.002 | - |
0.6634 | 550 | 0.0015 | - |
0.7238 | 600 | 0.0011 | - |
0.7841 | 650 | 0.0009 | - |
0.8444 | 700 | 0.0008 | - |
0.9047 | 750 | 0.0005 | - |
0.9650 | 800 | 0.0007 | - |
1.0 | 829 | - | 0.0211 |
1.0253 | 850 | 0.0006 | - |
1.0856 | 900 | 0.0005 | - |
1.1460 | 950 | 0.0005 | - |
1.2063 | 1000 | 0.0003 | - |
1.2666 | 1050 | 0.0003 | - |
1.3269 | 1100 | 0.0004 | - |
1.3872 | 1150 | 0.0003 | - |
1.4475 | 1200 | 0.0004 | - |
1.5078 | 1250 | 0.0002 | - |
1.5682 | 1300 | 0.0003 | - |
1.6285 | 1350 | 0.0003 | - |
1.6888 | 1400 | 0.0003 | - |
1.7491 | 1450 | 0.0003 | - |
1.8094 | 1500 | 0.0003 | - |
1.8697 | 1550 | 0.0003 | - |
1.9300 | 1600 | 0.0002 | - |
1.9903 | 1650 | 0.0002 | - |
2.0 | 1658 | - | 0.0190 |
2.0507 | 1700 | 0.0003 | - |
2.1110 | 1750 | 0.0002 | - |
2.1713 | 1800 | 0.0002 | - |
2.2316 | 1850 | 0.0002 | - |
2.2919 | 1900 | 0.0002 | - |
2.3522 | 1950 | 0.0002 | - |
2.4125 | 2000 | 0.0002 | - |
2.4729 | 2050 | 0.0002 | - |
2.5332 | 2100 | 0.0002 | - |
2.5935 | 2150 | 0.0002 | - |
2.6538 | 2200 | 0.0001 | - |
2.7141 | 2250 | 0.0002 | - |
2.7744 | 2300 | 0.0001 | - |
2.8347 | 2350 | 0.0002 | - |
2.8951 | 2400 | 0.0001 | - |
2.9554 | 2450 | 0.0002 | - |
3.0 | 2487 | - | 0.0181 |
3.0157 | 2500 | 0.0002 | - |
3.0760 | 2550 | 0.0001 | - |
3.1363 | 2600 | 0.0001 | - |
3.1966 | 2650 | 0.0001 | - |
3.2569 | 2700 | 0.0001 | - |
3.3172 | 2750 | 0.0001 | - |
3.3776 | 2800 | 0.0001 | - |
3.4379 | 2850 | 0.0001 | - |
3.4982 | 2900 | 0.0001 | - |
3.5585 | 2950 | 0.0001 | - |
3.6188 | 3000 | 0.0001 | - |
3.6791 | 3050 | 0.0001 | - |
3.7394 | 3100 | 0.0001 | - |
3.7998 | 3150 | 0.0001 | - |
3.8601 | 3200 | 0.0001 | - |
3.9204 | 3250 | 0.0001 | - |
3.9807 | 3300 | 0.0001 | - |
4.0 | 3316 | - | 0.0176 |
Framework Versions
- Python: 3.11.12
- SetFit: 1.1.2
- Sentence Transformers: 3.4.1
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Datasets: 3.5.1
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 197
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support