SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
matches-match_time
  • 'Norwich City vs Newcastle United'
  • 'will Manchester United play with chelsea'
  • 'est-ce que Manchester United jouera avec chelsea'
matches-match_result
  • 'Liverpool and West Ham result'
  • 'what is the score of Wolverhampton match'
  • 'who won in Liverpool vs Newcastle United match'
greet-who_are_you
  • 'how can you help me'
  • "pourquoi j'ai besoin de toi"
  • 'je ne te comprends pas'
matches-team_next_match
  • 'Real Madrid fixtures'
  • 'quels sont les prochains matchs de Borussia Dortmund'
  • 'próximos partidos de Atletico Madrid'
greet-good_bye
  • 'See you later'
  • 'A plus tard'
  • 'stop'
greet-hi
  • 'Hello buddy'
  • 'Salut'
  • 'Hey'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Ah7med/setfit-football_bootpress_paraph-multi-v2")
# Run inference
preds = model("why do I need you")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 5.2 10
Label Training Sample Count
greet-hi 5
greet-who_are_you 7
greet-good_bye 5
matches-team_next_match 21
matches-match_time 12
matches-match_result 15

Training Hyperparameters

  • batch_size: (4, 4)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0012 1 0.1308 -
0.0603 50 0.1596 -
0.1206 100 0.1399 -
0.1809 150 0.089 -
0.2413 200 0.0461 -
0.3016 250 0.026 -
0.3619 300 0.0081 -
0.4222 350 0.0048 -
0.4825 400 0.0039 -
0.5428 450 0.0018 -
0.6031 500 0.002 -
0.6634 550 0.0015 -
0.7238 600 0.0011 -
0.7841 650 0.0009 -
0.8444 700 0.0008 -
0.9047 750 0.0005 -
0.9650 800 0.0007 -
1.0 829 - 0.0211
1.0253 850 0.0006 -
1.0856 900 0.0005 -
1.1460 950 0.0005 -
1.2063 1000 0.0003 -
1.2666 1050 0.0003 -
1.3269 1100 0.0004 -
1.3872 1150 0.0003 -
1.4475 1200 0.0004 -
1.5078 1250 0.0002 -
1.5682 1300 0.0003 -
1.6285 1350 0.0003 -
1.6888 1400 0.0003 -
1.7491 1450 0.0003 -
1.8094 1500 0.0003 -
1.8697 1550 0.0003 -
1.9300 1600 0.0002 -
1.9903 1650 0.0002 -
2.0 1658 - 0.0190
2.0507 1700 0.0003 -
2.1110 1750 0.0002 -
2.1713 1800 0.0002 -
2.2316 1850 0.0002 -
2.2919 1900 0.0002 -
2.3522 1950 0.0002 -
2.4125 2000 0.0002 -
2.4729 2050 0.0002 -
2.5332 2100 0.0002 -
2.5935 2150 0.0002 -
2.6538 2200 0.0001 -
2.7141 2250 0.0002 -
2.7744 2300 0.0001 -
2.8347 2350 0.0002 -
2.8951 2400 0.0001 -
2.9554 2450 0.0002 -
3.0 2487 - 0.0181
3.0157 2500 0.0002 -
3.0760 2550 0.0001 -
3.1363 2600 0.0001 -
3.1966 2650 0.0001 -
3.2569 2700 0.0001 -
3.3172 2750 0.0001 -
3.3776 2800 0.0001 -
3.4379 2850 0.0001 -
3.4982 2900 0.0001 -
3.5585 2950 0.0001 -
3.6188 3000 0.0001 -
3.6791 3050 0.0001 -
3.7394 3100 0.0001 -
3.7998 3150 0.0001 -
3.8601 3200 0.0001 -
3.9204 3250 0.0001 -
3.9807 3300 0.0001 -
4.0 3316 - 0.0176

Framework Versions

  • Python: 3.11.12
  • SetFit: 1.1.2
  • Sentence Transformers: 3.4.1
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Datasets: 3.5.1
  • Tokenizers: 0.21.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
197
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Ah7med/setfit-football_bootpress_paraph-multi-v2

Finetuned
(202)
this model
Finetunes
1 model

Evaluation results