SentenceTransformer based on Snowflake/snowflake-arctic-embed-l

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-l
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Ahmednogood/legal-ft-8e57573c-3113-40ec-9cc6-71134cd9eade")
# Run inference
sentences = [
    'What challenges does the author mention about implementing evaluation patterns for their work?',
    'I’m still trying to figure out the best patterns for doing this for my own work. Everyone knows that evals are important, but there remains a lack of great guidance for how to best implement them—I’m tracking this under my evals tag. My SVG pelican riding a bicycle benchmark is a pale imitation of what a real eval suite should look like.\nApple Intelligence is bad, Apple’s MLX library is excellent\nAs a Mac user I’ve been feeling a lot better about my choice of platform this year.\nLast year it felt like my lack of a Linux/Windows  machine with an NVIDIA GPU was a huge disadvantage in terms of trying out new models.',
    'I run a bunch of them on my laptop. I run Mistral 7B (a surprisingly great model) on my iPhone. You can install several different apps to get your own, local, completely private LLM. My own LLM project provides a CLI tool for running an array of different models via plugins.\nYou can even run them entirely in your browser using WebAssembly and the latest Chrome!\nHobbyists can build their own fine-tuned models\nI said earlier that building an LLM was still out of reach of hobbyists. That may be true for training from scratch, but fine-tuning one of those models is another matter entirely.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.875
cosine_accuracy@3 0.9583
cosine_accuracy@5 1.0
cosine_accuracy@10 1.0
cosine_precision@1 0.875
cosine_precision@3 0.3194
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.875
cosine_recall@3 0.9583
cosine_recall@5 1.0
cosine_recall@10 1.0
cosine_ndcg@10 0.9455
cosine_mrr@10 0.9271
cosine_map@100 0.9271

Training Details

Training Dataset

Unnamed Dataset

  • Size: 157 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 157 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 2 tokens
    • mean: 20.82 tokens
    • max: 33 tokens
    • min: 43 tokens
    • mean: 135.45 tokens
    • max: 214 tokens
  • Samples:
    sentence_0 sentence_1
    What was the typical context length accepted by most models last year? Gemini 1.5 Pro also illustrated one of the key themes of 2024: increased context lengths. Last year most models accepted 4,096 or 8,192 tokens, with the notable exception of Claude 2.1 which accepted 200,000. Today every serious provider has a 100,000+ token model, and Google’s Gemini series accepts up to 2 million.
    How many tokens can Google’s Gemini series accept in its models? Gemini 1.5 Pro also illustrated one of the key themes of 2024: increased context lengths. Last year most models accepted 4,096 or 8,192 tokens, with the notable exception of Claude 2.1 which accepted 200,000. Today every serious provider has a 100,000+ token model, and Google’s Gemini series accepts up to 2 million.
    What are some companies mentioned that have developed multi-modal audio models? Your browser does not support the audio element.

    OpenAI aren’t the only group with a multi-modal audio model. Google’s Gemini also accepts audio input, and the Google Gemini apps can speak in a similar way to ChatGPT now. Amazon also pre-announced voice mode for Amazon Nova, but that’s meant to roll out in Q1 of 2025.
    Google’s NotebookLM, released in September, took audio output to a new level by producing spookily realistic conversations between two “podcast hosts” about anything you fed into their tool. They later added custom instructions, so naturally I turned them into pelicans:


    Your browser does not support the audio element.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 10
  • per_device_eval_batch_size: 10
  • num_train_epochs: 10
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 10
  • per_device_eval_batch_size: 10
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step cosine_ndcg@10
1.0 16 0.9554
2.0 32 0.9539
3.0 48 0.9484
3.125 50 0.9484
4.0 64 0.9484
5.0 80 0.9484
6.0 96 0.9484
6.25 100 0.9484
7.0 112 0.9484
8.0 128 0.9484
9.0 144 0.9455
9.375 150 0.9455
10.0 160 0.9455

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.5.1
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
8
Safetensors
Model size
334M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Ahmednogood/legal-ft-8e57573c-3113-40ec-9cc6-71134cd9eade

Finetuned
(167)
this model

Evaluation results