ONNX
English

Spaces Demo

Trained with Matcha-TTS(Not my work,I just converted to onnx) - Github | Paper

How to Infer see Github page

License

You have to follow the cc-by-4.0 vctk license.

Datasets License

  • VCTK Dataset license are cc-by-4.0

Tools License

These tools did not effect output license.

  • Matcha-TTS - MIT
  • ONNX Simplifier - Apache2.0
  • onnxruntime - MIT

Converted model Owner(me)

I release my output under MIT License.If you want your license ,convert it by yourself

Onnx File Type

All models are simplify(If you need original,export by yourself)

Vocoder:hifigan_univ_v1(some english speaker avoid robotic)

  • vctk_univ_simplify.onnx
  • vctk_univ_simplify_q8.onnx - Quantized Github page friendly small size ,but 3-5 times slow

Vocoder:hifigan_T2_v1(Good for English)

  • vctk_t2_simplify.onnx
  • vctk_t2_simplify_q8.onnx - Quantized Github page friendly small size ,but 3-5 times slow

How to Convert

Export Model

see Matcha-TTS ONNX export

python -m matcha.onnx.export matcha_vctk.ckpt vctk_t2.onnx --vocoder-name "hifigan_T2_v1" --vocoder-checkpoint "generator_v1"

simplify model

from onnxsim import simplify
import onnx

import argparse
parser = argparse.ArgumentParser(
        description="create simplify onnx"
    )
parser.add_argument(
        "--input","-i",
        type=str,required=True
    )
parser.add_argument(
        "--output","-o",
        type=str
    )
args = parser.parse_args()

src_model_path = args.input
if args.output == None:
    dst_model_path = src_model_path.replace(".onnx","_simplify.onnx")
else:
    dst_model_path = args.output


model = onnx.load(src_model_path)
model_simp, check = simplify(model)

onnx.save(model_simp, dst_model_path)

quantize model

from onnxruntime.quantization import quantize_dynamic, QuantType
import argparse
parser = argparse.ArgumentParser(
        description="create quantized onnx"
    )
parser.add_argument(
        "--input","-i",
        type=str,required=True
    )
parser.add_argument(
        "--output","-o",
        type=str
    )
args = parser.parse_args()

src_model_path = args.input
if args.output == None:
    dst_model_path = src_model_path.replace(".onnx","_q8.onnx")
else:
    dst_model_path = args.output
    
# only QUInt8 works well
quantized_model = quantize_dynamic(src_model_path, dst_model_path, weight_type=QuantType.QUInt8)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Dataset used to train Akjava/matcha-tts_vctk-onnx

Spaces using Akjava/matcha-tts_vctk-onnx 4