See axolotl config
axolotl version: 0.13.0.dev0
base_model: /mnt/shared/p02/alex/gpt-oss-vl/gpt-oss-20b-vl-sft-output-7/checkpoint-16254
model_type: AutoModelForImageTextToText
processor_type: AutoProcessor
trust_remote_code: true
skip_prepare_dataset: true
remove_unused_columns: false
sample_packing: false
unfrozen_parameters:
- ^visual.merger.[\s\S]+$
- ^visual.merger_list.[\s\S]+$
- ^model.model.embed_tokens.weight$[200009:200012]
datasets:
- path: /mnt/shared/p02/alex/gpt-oss-vl/mscoco
type: chat_template
split: train
# - path: AlexHung29629/openimages_objdet
# type: chat_template
# split: train
message_property_mappings:
role: role
content: content
thinking: thinking
dataset_prepared_path: last_run_prepared
val_set_size: 0
sequence_len: 4096
pad_to_sequence_len: true
dataloader_pin_memory: true
dataloader_num_workers: 16
gradient_accumulation_steps: 1
#gradient_checkpointing: true
micro_batch_size: 16
output_dir: ./gpt-oss-20b-vl-sft-output-10
num_epochs: 1
warmup_ratio: 0.01
torch_compile: false
torch_compile_backend: inductor
torch_compile_mode: reduce-overhead
max_grad_norm: 1.0
evals_per_epoch: 1
saves_per_epoch: 1
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.0002
logging_steps: 1
bf16: true
fsdp_version: 2
fsdp_config:
activation_checkpointing: true
offload_params: false
state_dict_type: FULL_STATE_DICT
auto_wrap_policy: TRANSFORMER_BASED_WRAP
transformer_layer_cls_to_wrap: GptOssDecoderLayer
reshard_after_forward: false
cpu_ram_efficient_loading: true
flash_attention: true
seed: 42
use_tensorboard: true
use_wandb: true
image_size: 1024
gpt-oss-20b-vl-sft-output-10
This model was trained from scratch on an unknown dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 44
- training_steps: 4428
Training results
Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 9