Alfanatasya's picture
indobert-large-p2_preprocessing_tuning
a369abd verified
metadata
library_name: transformers
license: mit
base_model: indobenchmark/indobert-large-p2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: results_indobert-large-p2_preprocessing_tuning
    results: []

results_indobert-large-p2_preprocessing_tuning

This model is a fine-tuned version of indobenchmark/indobert-large-p2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2148
  • Accuracy: 0.5659
  • Precision: 0.6035
  • Recall: 0.5365
  • F1: 0.5245

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6.859942542315833e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.5861 1.0 111 1.5168 0.3591 0.4502 0.2992 0.2327
1.5187 2.0 222 1.4637 0.4091 0.4136 0.3625 0.3418
1.4643 3.0 333 1.4239 0.4591 0.4841 0.4226 0.3973
1.4121 4.0 444 1.3840 0.4932 0.5254 0.4505 0.4407
1.3867 5.0 555 1.3513 0.5 0.4415 0.4569 0.4354
1.354 6.0 666 1.3264 0.5273 0.5355 0.4904 0.4677
1.3291 7.0 777 1.3046 0.5295 0.5774 0.4884 0.4707
1.305 8.0 888 1.2889 0.5364 0.5420 0.5069 0.5010
1.2878 9.0 999 1.2736 0.525 0.5651 0.4960 0.4928
1.2766 10.0 1110 1.2594 0.5432 0.5880 0.5045 0.4849
1.2655 11.0 1221 1.2490 0.55 0.5661 0.5142 0.4887
1.2462 12.0 1332 1.2384 0.55 0.5832 0.5171 0.5025
1.2385 13.0 1443 1.2321 0.5386 0.5710 0.4972 0.4901
1.23 14.0 1554 1.2251 0.55 0.5910 0.5181 0.5060
1.2292 15.0 1665 1.2196 0.5545 0.5709 0.5256 0.5155
1.2246 16.0 1776 1.2148 0.5659 0.6035 0.5365 0.5245
1.2229 17.0 1887 1.2113 0.5659 0.6022 0.5366 0.5260
1.2235 18.0 1998 1.2093 0.5614 0.5960 0.5327 0.5211
1.2125 19.0 2109 1.2079 0.5614 0.5954 0.5329 0.5217
1.2153 20.0 2220 1.2074 0.5591 0.5929 0.5307 0.5194

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2