results_indobert-large-p2_with_preprocessing

This model is a fine-tuned version of indobenchmark/indobert-large-p2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4698
  • Accuracy: 0.4205
  • Precision: 0.4834
  • Recall: 0.3837
  • F1: 0.3699

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.7277 1.0 111 1.6459 0.2432 0.1889 0.1984 0.0945
1.6728 2.0 222 1.5886 0.2523 0.2748 0.2149 0.1631
1.64 3.0 333 1.5661 0.2636 0.2986 0.2273 0.1996
1.6025 4.0 444 1.5510 0.2886 0.3229 0.2493 0.2183
1.6051 5.0 555 1.5366 0.325 0.3733 0.2873 0.2596
1.5794 6.0 666 1.5216 0.35 0.4359 0.3120 0.2937
1.568 7.0 777 1.5081 0.3841 0.5137 0.3478 0.3379
1.5721 8.0 888 1.4969 0.4 0.4983 0.3656 0.3575
1.5385 9.0 999 1.4858 0.3932 0.5169 0.3584 0.3501
1.5405 10.0 1110 1.4779 0.4091 0.5295 0.3719 0.3609
1.5143 11.0 1221 1.4698 0.4205 0.4834 0.3837 0.3699
1.5145 12.0 1332 1.4631 0.4091 0.4961 0.3730 0.3626
1.5121 13.0 1443 1.4567 0.4182 0.4957 0.3802 0.3676

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
3
Safetensors
Model size
335M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Alfanatasya/results_indobert-large-p2_with_preprocessing

Finetuned
(15)
this model