chore: migrate to official transformers Qwen2 implementation

#60
Files changed (2) hide show
  1. modeling_qwen.py +1 -1429
  2. tokenization_qwen.py +1 -267
modeling_qwen.py CHANGED
@@ -1,1429 +1 @@
1
- # coding=utf-8
2
- # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
- # and OPT implementations in this library. It has been modified from its
6
- # original forms to accommodate minor architectural differences compared
7
- # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
- #
9
- # Licensed under the Apache License, Version 2.0 (the "License");
10
- # you may not use this file except in compliance with the License.
11
- # You may obtain a copy of the License at
12
- #
13
- # http://www.apache.org/licenses/LICENSE-2.0
14
- #
15
- # Unless required by applicable law or agreed to in writing, software
16
- # distributed under the License is distributed on an "AS IS" BASIS,
17
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
- # See the License for the specific language governing permissions and
19
- # limitations under the License.
20
- """ PyTorch Qwen2 model."""
21
- from transformers import Qwen2Config
22
- import inspect
23
- import math
24
- import os
25
- import warnings
26
- from typing import List, Optional, Tuple, Union
27
-
28
- import torch
29
- import torch.nn.functional as F
30
- import torch.utils.checkpoint
31
- from torch import nn
32
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
33
-
34
- from transformers.activations import ACT2FN
35
- from transformers.cache_utils import Cache, DynamicCache
36
- from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
37
- from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
38
- from transformers.modeling_utils import PreTrainedModel
39
- from transformers.utils import (
40
- add_start_docstrings,
41
- add_start_docstrings_to_model_forward,
42
- is_flash_attn_2_available,
43
- is_flash_attn_greater_or_equal_2_10,
44
- logging,
45
- replace_return_docstrings,
46
- )
47
-
48
-
49
- if is_flash_attn_2_available():
50
- from flash_attn import flash_attn_func, flash_attn_varlen_func
51
- from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
52
-
53
- _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
54
-
55
-
56
- logger = logging.get_logger(__name__)
57
-
58
-
59
- _CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta"
60
- _CONFIG_FOR_DOC = "Qwen2Config"
61
-
62
- QWEN2_PRETRAINED_MODEL_ARCHIVE_LIST = [
63
- "Qwen/Qwen2-7B-beta",
64
- # See all Qwen2 models at https://huggingface.co/models?filter=qwen2
65
- ]
66
-
67
-
68
- # Copied from transformers.models.llama.modeling_llama._get_unpad_data
69
- def _get_unpad_data(attention_mask):
70
- seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
71
- indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
72
- max_seqlen_in_batch = seqlens_in_batch.max().item()
73
- cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
74
- return (
75
- indices,
76
- cu_seqlens,
77
- max_seqlen_in_batch,
78
- )
79
-
80
-
81
- # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2
82
- class Qwen2RMSNorm(nn.Module):
83
- def __init__(self, hidden_size, eps=1e-6):
84
- """
85
- Qwen2RMSNorm is equivalent to T5LayerNorm
86
- """
87
- super().__init__()
88
- self.weight = nn.Parameter(torch.ones(hidden_size))
89
- self.variance_epsilon = eps
90
-
91
- def forward(self, hidden_states):
92
- input_dtype = hidden_states.dtype
93
- hidden_states = hidden_states.to(torch.float32)
94
- variance = hidden_states.pow(2).mean(-1, keepdim=True)
95
- hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
96
- return self.weight * hidden_states.to(input_dtype)
97
-
98
-
99
- # Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Qwen2
100
- class Qwen2RotaryEmbedding(nn.Module):
101
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
102
- super().__init__()
103
-
104
- self.dim = dim
105
- self.max_position_embeddings = max_position_embeddings
106
- self.base = base
107
- inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
108
- self.register_buffer("inv_freq", inv_freq, persistent=False)
109
-
110
- # Build here to make `torch.jit.trace` work.
111
- self._set_cos_sin_cache(
112
- seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
113
- )
114
-
115
- def _set_cos_sin_cache(self, seq_len, device, dtype):
116
- self.max_seq_len_cached = seq_len
117
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
118
-
119
- freqs = torch.outer(t, self.inv_freq)
120
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
121
- emb = torch.cat((freqs, freqs), dim=-1)
122
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
123
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
124
-
125
- def forward(self, x, seq_len=None):
126
- # x: [bs, num_attention_heads, seq_len, head_size]
127
- if seq_len > self.max_seq_len_cached:
128
- self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
129
-
130
- return (
131
- self.cos_cached[:seq_len].to(dtype=x.dtype),
132
- self.sin_cached[:seq_len].to(dtype=x.dtype),
133
- )
134
-
135
-
136
- # Copied from transformers.models.llama.modeling_llama.rotate_half
137
- def rotate_half(x):
138
- """Rotates half the hidden dims of the input."""
139
- x1 = x[..., : x.shape[-1] // 2]
140
- x2 = x[..., x.shape[-1] // 2 :]
141
- return torch.cat((-x2, x1), dim=-1)
142
-
143
-
144
- # Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
145
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
146
- """Applies Rotary Position Embedding to the query and key tensors.
147
-
148
- Args:
149
- q (`torch.Tensor`): The query tensor.
150
- k (`torch.Tensor`): The key tensor.
151
- cos (`torch.Tensor`): The cosine part of the rotary embedding.
152
- sin (`torch.Tensor`): The sine part of the rotary embedding.
153
- position_ids (`torch.Tensor`):
154
- The position indices of the tokens corresponding to the query and key tensors. For example, this can be
155
- used to pass offsetted position ids when working with a KV-cache.
156
- unsqueeze_dim (`int`, *optional*, defaults to 1):
157
- The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
158
- sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
159
- that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
160
- k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
161
- cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
162
- the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
163
- Returns:
164
- `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
165
- """
166
- cos = cos[position_ids].unsqueeze(unsqueeze_dim)
167
- sin = sin[position_ids].unsqueeze(unsqueeze_dim)
168
- q_embed = (q * cos) + (rotate_half(q) * sin)
169
- k_embed = (k * cos) + (rotate_half(k) * sin)
170
- return q_embed, k_embed
171
-
172
-
173
- # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2
174
- class Qwen2MLP(nn.Module):
175
- def __init__(self, config):
176
- super().__init__()
177
- self.config = config
178
- self.hidden_size = config.hidden_size
179
- self.intermediate_size = config.intermediate_size
180
- self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
181
- self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
182
- self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
183
- self.act_fn = ACT2FN[config.hidden_act]
184
-
185
- def forward(self, x):
186
- return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
187
-
188
-
189
- # Copied from transformers.models.llama.modeling_llama.repeat_kv
190
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
191
- """
192
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
193
- num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
194
- """
195
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
196
- if n_rep == 1:
197
- return hidden_states
198
- hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
199
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
200
-
201
-
202
- class Qwen2Attention(nn.Module):
203
- """
204
- Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
205
- and "Generating Long Sequences with Sparse Transformers".
206
- """
207
-
208
- def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None):
209
- super().__init__()
210
- self.config = config
211
- self.layer_idx = layer_idx
212
- if layer_idx is None:
213
- logger.warning_once(
214
- f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
215
- "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
216
- "when creating this class."
217
- )
218
-
219
- self.hidden_size = config.hidden_size
220
- self.num_heads = config.num_attention_heads
221
- self.head_dim = self.hidden_size // self.num_heads
222
- self.num_key_value_heads = config.num_key_value_heads
223
- self.num_key_value_groups = self.num_heads // self.num_key_value_heads
224
- self.max_position_embeddings = config.max_position_embeddings
225
- self.rope_theta = config.rope_theta
226
- self.is_causal = True
227
- self.attention_dropout = config.attention_dropout
228
-
229
- if (self.head_dim * self.num_heads) != self.hidden_size:
230
- raise ValueError(
231
- f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
232
- f" and `num_heads`: {self.num_heads})."
233
- )
234
- self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
235
- self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
236
- self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
237
- self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
238
-
239
- self.rotary_emb = Qwen2RotaryEmbedding(
240
- self.head_dim,
241
- max_position_embeddings=self.max_position_embeddings,
242
- base=self.rope_theta,
243
- )
244
-
245
- def forward(
246
- self,
247
- hidden_states: torch.Tensor,
248
- attention_mask: Optional[torch.Tensor] = None,
249
- position_ids: Optional[torch.LongTensor] = None,
250
- past_key_value: Optional[Cache] = None,
251
- output_attentions: bool = False,
252
- use_cache: bool = False,
253
- **kwargs,
254
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
255
- if "padding_mask" in kwargs:
256
- warnings.warn(
257
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
258
- )
259
- bsz, q_len, _ = hidden_states.size()
260
-
261
- query_states = self.q_proj(hidden_states)
262
- key_states = self.k_proj(hidden_states)
263
- value_states = self.v_proj(hidden_states)
264
-
265
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
266
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
267
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
268
-
269
- kv_seq_len = key_states.shape[-2]
270
- if past_key_value is not None:
271
- if self.layer_idx is None:
272
- raise ValueError(
273
- f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
274
- "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
275
- "with a layer index."
276
- )
277
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
278
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
279
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
280
-
281
- if past_key_value is not None:
282
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
283
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
284
-
285
- # repeat k/v heads if n_kv_heads < n_heads
286
- key_states = repeat_kv(key_states, self.num_key_value_groups)
287
- value_states = repeat_kv(value_states, self.num_key_value_groups)
288
-
289
- attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
290
-
291
- if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
292
- raise ValueError(
293
- f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
294
- f" {attn_weights.size()}"
295
- )
296
-
297
- if attention_mask is not None:
298
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
299
- raise ValueError(
300
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
301
- )
302
-
303
- attn_weights = attn_weights + attention_mask
304
-
305
- # upcast attention to fp32
306
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
307
- attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
308
- attn_output = torch.matmul(attn_weights, value_states)
309
-
310
- if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
311
- raise ValueError(
312
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
313
- f" {attn_output.size()}"
314
- )
315
-
316
- attn_output = attn_output.transpose(1, 2).contiguous()
317
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
318
-
319
- attn_output = self.o_proj(attn_output)
320
-
321
- if not output_attentions:
322
- attn_weights = None
323
-
324
- return attn_output, attn_weights, past_key_value
325
-
326
-
327
- class Qwen2FlashAttention2(Qwen2Attention):
328
- """
329
- Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention`
330
- as the weights of the module stays untouched. The only required change would be on the forward pass
331
- where it needs to correctly call the public API of flash attention and deal with padding tokens
332
- in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
333
- config.max_window_layers layers.
334
- """
335
-
336
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
337
- def __init__(self, *args, **kwargs):
338
- super().__init__(*args, **kwargs)
339
-
340
- # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
341
- # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
342
- # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
343
- self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
344
-
345
- def forward(
346
- self,
347
- hidden_states: torch.Tensor,
348
- attention_mask: Optional[torch.Tensor] = None,
349
- position_ids: Optional[torch.LongTensor] = None,
350
- past_key_value: Optional[Cache] = None,
351
- output_attentions: bool = False,
352
- use_cache: bool = False,
353
- is_causal: bool = False,
354
- **kwargs,
355
- ):
356
- if "padding_mask" in kwargs:
357
- warnings.warn(
358
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
359
- )
360
-
361
- # overwrite attention_mask with padding_mask
362
- attention_mask = kwargs.pop("padding_mask")
363
- bsz, q_len, _ = hidden_states.size()
364
-
365
- query_states = self.q_proj(hidden_states)
366
- key_states = self.k_proj(hidden_states)
367
- value_states = self.v_proj(hidden_states)
368
-
369
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
370
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
371
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
372
-
373
- kv_seq_len = key_states.shape[-2]
374
- if past_key_value is not None:
375
- if self.layer_idx is None:
376
- raise ValueError(
377
- f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
378
- "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
379
- "with a layer index."
380
- )
381
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
382
-
383
- # Because the input can be padded, the absolute sequence length depends on the max position id.
384
- rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
385
- cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
386
-
387
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
388
-
389
- use_sliding_windows = (
390
- _flash_supports_window_size
391
- and getattr(self.config, "sliding_window", None) is not None
392
- and kv_seq_len > self.config.sliding_window
393
- and self.config.use_sliding_window
394
- )
395
-
396
- if not _flash_supports_window_size:
397
- logger.warning_once(
398
- "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
399
- " make sure to upgrade flash-attn library."
400
- )
401
-
402
- if past_key_value is not None:
403
- # Activate slicing cache only if the config has a value `sliding_windows` attribute
404
- cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
405
- if (
406
- getattr(self.config, "sliding_window", None) is not None
407
- and kv_seq_len > self.config.sliding_window
408
- and cache_has_contents
409
- ):
410
- slicing_tokens = 1 - self.config.sliding_window
411
-
412
- past_key = past_key_value[self.layer_idx][0]
413
- past_value = past_key_value[self.layer_idx][1]
414
-
415
- past_key = past_key[:, :, slicing_tokens:, :].contiguous()
416
- past_value = past_value[:, :, slicing_tokens:, :].contiguous()
417
-
418
- if past_key.shape[-2] != self.config.sliding_window - 1:
419
- raise ValueError(
420
- f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
421
- f" {past_key.shape}"
422
- )
423
-
424
- if attention_mask is not None:
425
- attention_mask = attention_mask[:, slicing_tokens:]
426
- attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
427
-
428
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
429
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
430
-
431
- # repeat k/v heads if n_kv_heads < n_heads
432
- key_states = repeat_kv(key_states, self.num_key_value_groups)
433
- value_states = repeat_kv(value_states, self.num_key_value_groups)
434
- dropout_rate = 0.0 if not self.training else self.attention_dropout
435
-
436
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
437
- # therefore the input hidden states gets silently casted in float32. Hence, we need
438
- # cast them back in float16 just to be sure everything works as expected.
439
- input_dtype = query_states.dtype
440
- if input_dtype == torch.float32:
441
- if torch.is_autocast_enabled():
442
- target_dtype = torch.get_autocast_gpu_dtype()
443
- # Handle the case where the model is quantized
444
- elif hasattr(self.config, "_pre_quantization_dtype"):
445
- target_dtype = self.config._pre_quantization_dtype
446
- else:
447
- target_dtype = self.q_proj.weight.dtype
448
-
449
- logger.warning_once(
450
- f"The input hidden states seems to be silently casted in float32, this might be related to"
451
- f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
452
- f" {target_dtype}."
453
- )
454
-
455
- query_states = query_states.to(target_dtype)
456
- key_states = key_states.to(target_dtype)
457
- value_states = value_states.to(target_dtype)
458
-
459
- # Reashape to the expected shape for Flash Attention
460
- query_states = query_states.transpose(1, 2)
461
- key_states = key_states.transpose(1, 2)
462
- value_states = value_states.transpose(1, 2)
463
-
464
- attn_output = self._flash_attention_forward(
465
- query_states,
466
- key_states,
467
- value_states,
468
- attention_mask,
469
- q_len,
470
- dropout=dropout_rate,
471
- use_sliding_windows=use_sliding_windows,
472
- is_causal=is_causal
473
- )
474
-
475
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
476
- attn_output = self.o_proj(attn_output)
477
-
478
- if not output_attentions:
479
- attn_weights = None
480
-
481
- return attn_output, attn_weights, past_key_value
482
-
483
- def _flash_attention_forward(
484
- self,
485
- query_states,
486
- key_states,
487
- value_states,
488
- attention_mask,
489
- query_length,
490
- dropout=0.0,
491
- softmax_scale=None,
492
- use_sliding_windows=False,
493
- is_causal=True,
494
- ):
495
- """
496
- Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
497
- first unpad the input, then computes the attention scores and pad the final attention scores.
498
-
499
- Args:
500
- query_states (`torch.Tensor`):
501
- Input query states to be passed to Flash Attention API
502
- key_states (`torch.Tensor`):
503
- Input key states to be passed to Flash Attention API
504
- value_states (`torch.Tensor`):
505
- Input value states to be passed to Flash Attention API
506
- attention_mask (`torch.Tensor`):
507
- The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
508
- position of padding tokens and 1 for the position of non-padding tokens.
509
- dropout (`int`, *optional*):
510
- Attention dropout
511
- softmax_scale (`float`, *optional*):
512
- The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
513
- use_sliding_windows (`bool`, *optional*):
514
- Whether to activate sliding window attention.
515
- """
516
- if not self._flash_attn_uses_top_left_mask:
517
- causal = is_causal
518
- else:
519
- # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
520
- causal = is_causal and query_length != 1
521
-
522
- # Decide whether to use SWA or not by layer index.
523
- if use_sliding_windows and self.layer_idx >= self.config.max_window_layers:
524
- use_sliding_windows = False
525
-
526
- # Contains at least one padding token in the sequence
527
- if attention_mask is not None:
528
- batch_size = query_states.shape[0]
529
- query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
530
- query_states, key_states, value_states, attention_mask, query_length
531
- )
532
-
533
- cu_seqlens_q, cu_seqlens_k = cu_seq_lens
534
- max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
535
-
536
- if not use_sliding_windows:
537
- attn_output_unpad = flash_attn_varlen_func(
538
- query_states,
539
- key_states,
540
- value_states,
541
- cu_seqlens_q=cu_seqlens_q,
542
- cu_seqlens_k=cu_seqlens_k,
543
- max_seqlen_q=max_seqlen_in_batch_q,
544
- max_seqlen_k=max_seqlen_in_batch_k,
545
- dropout_p=dropout,
546
- softmax_scale=softmax_scale,
547
- causal=causal,
548
- )
549
- else:
550
- attn_output_unpad = flash_attn_varlen_func(
551
- query_states,
552
- key_states,
553
- value_states,
554
- cu_seqlens_q=cu_seqlens_q,
555
- cu_seqlens_k=cu_seqlens_k,
556
- max_seqlen_q=max_seqlen_in_batch_q,
557
- max_seqlen_k=max_seqlen_in_batch_k,
558
- dropout_p=dropout,
559
- softmax_scale=softmax_scale,
560
- causal=causal,
561
- window_size=(self.config.sliding_window, self.config.sliding_window),
562
- )
563
-
564
- attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
565
- else:
566
- if not use_sliding_windows:
567
- attn_output = flash_attn_func(
568
- query_states,
569
- key_states,
570
- value_states,
571
- dropout,
572
- softmax_scale=softmax_scale,
573
- causal=causal,
574
- )
575
- else:
576
- attn_output = flash_attn_func(
577
- query_states,
578
- key_states,
579
- value_states,
580
- dropout,
581
- softmax_scale=softmax_scale,
582
- causal=causal,
583
- window_size=(self.config.sliding_window, self.config.sliding_window),
584
- )
585
-
586
- return attn_output
587
-
588
- # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
589
- def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
590
- batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
591
-
592
- # On the first iteration we need to properly re-create the padding mask
593
- # by slicing it on the proper place
594
- if kv_seq_len != attention_mask.shape[-1]:
595
- attention_mask_num_tokens = attention_mask.shape[-1]
596
- attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
597
-
598
- indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
599
-
600
- key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
601
- value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
602
-
603
- if query_length == kv_seq_len:
604
- query_layer = index_first_axis(
605
- query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
606
- )
607
- cu_seqlens_q = cu_seqlens_k
608
- max_seqlen_in_batch_q = max_seqlen_in_batch_k
609
- indices_q = indices_k
610
- elif query_length == 1:
611
- max_seqlen_in_batch_q = 1
612
- cu_seqlens_q = torch.arange(
613
- batch_size + 1, dtype=torch.int32, device=query_layer.device
614
- ) # There is a memcpy here, that is very bad.
615
- indices_q = cu_seqlens_q[:-1]
616
- query_layer = query_layer.squeeze(1)
617
- else:
618
- # The -q_len: slice assumes left padding.
619
- attention_mask = attention_mask[:, -query_length:]
620
- query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
621
-
622
- return (
623
- query_layer,
624
- key_layer,
625
- value_layer,
626
- indices_q,
627
- (cu_seqlens_q, cu_seqlens_k),
628
- (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
629
- )
630
-
631
-
632
- # Copied from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Qwen2
633
- class Qwen2SdpaAttention(Qwen2Attention):
634
- """
635
- Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
636
- `Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
637
- SDPA API.
638
- """
639
-
640
- # Adapted from Qwen2Attention.forward
641
- def forward(
642
- self,
643
- hidden_states: torch.Tensor,
644
- attention_mask: Optional[torch.Tensor] = None,
645
- position_ids: Optional[torch.LongTensor] = None,
646
- past_key_value: Optional[Cache] = None,
647
- output_attentions: bool = False,
648
- use_cache: bool = False,
649
- is_causal: bool = True,
650
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
651
- if output_attentions:
652
- # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
653
- logger.warning_once(
654
- "Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
655
- 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
656
- )
657
- return super().forward(
658
- hidden_states=hidden_states,
659
- attention_mask=attention_mask,
660
- position_ids=position_ids,
661
- past_key_value=past_key_value,
662
- output_attentions=output_attentions,
663
- use_cache=use_cache,
664
- is_causal=is_causal
665
- )
666
-
667
- bsz, q_len, _ = hidden_states.size()
668
-
669
- query_states = self.q_proj(hidden_states)
670
- key_states = self.k_proj(hidden_states)
671
- value_states = self.v_proj(hidden_states)
672
-
673
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
674
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
675
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
676
-
677
- kv_seq_len = key_states.shape[-2]
678
- if past_key_value is not None:
679
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
680
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
681
-
682
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
683
-
684
- if past_key_value is not None:
685
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
686
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
687
-
688
- key_states = repeat_kv(key_states, self.num_key_value_groups)
689
- value_states = repeat_kv(value_states, self.num_key_value_groups)
690
-
691
- if attention_mask is not None:
692
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
693
- raise ValueError(
694
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
695
- )
696
-
697
- # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
698
- # Reference: https://github.com/pytorch/pytorch/issues/112577.
699
- if query_states.device.type == "cuda" and attention_mask is not None:
700
- query_states = query_states.contiguous()
701
- key_states = key_states.contiguous()
702
- value_states = value_states.contiguous()
703
-
704
- attn_output = torch.nn.functional.scaled_dot_product_attention(
705
- query_states,
706
- key_states,
707
- value_states,
708
- attn_mask=attention_mask,
709
- dropout_p=self.attention_dropout if self.training else 0.0,
710
- # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
711
- is_causal=is_causal and attention_mask is None and q_len > 1,
712
- )
713
-
714
- attn_output = attn_output.transpose(1, 2).contiguous()
715
- attn_output = attn_output.view(bsz, q_len, self.hidden_size)
716
-
717
- attn_output = self.o_proj(attn_output)
718
-
719
- return attn_output, None, past_key_value
720
-
721
-
722
- QWEN2_ATTENTION_CLASSES = {
723
- "eager": Qwen2Attention,
724
- "flash_attention_2": Qwen2FlashAttention2,
725
- "sdpa": Qwen2SdpaAttention,
726
- }
727
-
728
-
729
- class Qwen2DecoderLayer(nn.Module):
730
- def __init__(self, config: Qwen2Config, layer_idx: int):
731
- super().__init__()
732
- self.hidden_size = config.hidden_size
733
-
734
- if config.use_sliding_window and config._attn_implementation != "flash_attention_2":
735
- logger.warning_once(
736
- f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
737
- "unexpected results may be encountered."
738
- )
739
- self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
740
-
741
- self.mlp = Qwen2MLP(config)
742
- self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
743
- self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
744
-
745
- def forward(
746
- self,
747
- hidden_states: torch.Tensor,
748
- attention_mask: Optional[torch.Tensor] = None,
749
- position_ids: Optional[torch.LongTensor] = None,
750
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
751
- output_attentions: Optional[bool] = False,
752
- use_cache: Optional[bool] = False,
753
- is_causal: Optional[bool] = True,
754
- **kwargs,
755
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
756
- if "padding_mask" in kwargs:
757
- warnings.warn(
758
- "Passing `padding_mask` is deprecated and will be removed in v4.37. "
759
- "Please make sure use `attention_mask` instead.`"
760
- )
761
- """
762
- Args:
763
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
764
- attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
765
- `(batch, sequence_length)` where padding elements are indicated by 0.
766
- output_attentions (`bool`, *optional*):
767
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
768
- returned tensors for more detail.
769
- use_cache (`bool`, *optional*):
770
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
771
- (see `past_key_values`).
772
- past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
773
- """
774
-
775
- residual = hidden_states
776
-
777
- hidden_states = self.input_layernorm(hidden_states)
778
-
779
- # Self Attention
780
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
781
- hidden_states=hidden_states,
782
- attention_mask=attention_mask,
783
- position_ids=position_ids,
784
- past_key_value=past_key_value,
785
- output_attentions=output_attentions,
786
- use_cache=use_cache,
787
- is_causal=is_causal,
788
- )
789
- hidden_states = residual + hidden_states
790
-
791
- # Fully Connected
792
- residual = hidden_states
793
- hidden_states = self.post_attention_layernorm(hidden_states)
794
- hidden_states = self.mlp(hidden_states)
795
- hidden_states = residual + hidden_states
796
-
797
- outputs = (hidden_states,)
798
-
799
- if output_attentions:
800
- outputs += (self_attn_weights,)
801
-
802
- if use_cache:
803
- outputs += (present_key_value,)
804
-
805
- return outputs
806
-
807
-
808
- QWEN2_START_DOCSTRING = r"""
809
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
810
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
811
- etc.)
812
-
813
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
814
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
815
- and behavior.
816
-
817
- Parameters:
818
- config ([`Qwen2Config`]):
819
- Model configuration class with all the parameters of the model. Initializing with a config file does not
820
- load the weights associated with the model, only the configuration. Check out the
821
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
822
- """
823
-
824
-
825
- @add_start_docstrings(
826
- "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
827
- QWEN2_START_DOCSTRING,
828
- )
829
- class Qwen2PreTrainedModel(PreTrainedModel):
830
- config_class = Qwen2Config
831
- base_model_prefix = "model"
832
- supports_gradient_checkpointing = True
833
- _no_split_modules = ["Qwen2DecoderLayer"]
834
- _skip_keys_device_placement = "past_key_values"
835
- _supports_flash_attn_2 = True
836
- _supports_sdpa = True
837
- _supports_cache_class = True
838
-
839
- def _init_weights(self, module):
840
- std = self.config.initializer_range
841
- if isinstance(module, nn.Linear):
842
- module.weight.data.normal_(mean=0.0, std=std)
843
- if module.bias is not None:
844
- module.bias.data.zero_()
845
- elif isinstance(module, nn.Embedding):
846
- module.weight.data.normal_(mean=0.0, std=std)
847
- if module.padding_idx is not None:
848
- module.weight.data[module.padding_idx].zero_()
849
-
850
-
851
- QWEN2_INPUTS_DOCSTRING = r"""
852
- Args:
853
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
854
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
855
- it.
856
-
857
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
858
- [`PreTrainedTokenizer.__call__`] for details.
859
-
860
- [What are input IDs?](../glossary#input-ids)
861
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
862
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
863
-
864
- - 1 for tokens that are **not masked**,
865
- - 0 for tokens that are **masked**.
866
-
867
- [What are attention masks?](../glossary#attention-mask)
868
-
869
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
870
- [`PreTrainedTokenizer.__call__`] for details.
871
-
872
- If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
873
- `past_key_values`).
874
-
875
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
876
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
877
- information on the default strategy.
878
-
879
- - 1 indicates the head is **not masked**,
880
- - 0 indicates the head is **masked**.
881
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
882
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
883
- config.n_positions - 1]`.
884
-
885
- [What are position IDs?](../glossary#position-ids)
886
- past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
887
- Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
888
- blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
889
- returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
890
-
891
- Two formats are allowed:
892
- - a [`~cache_utils.Cache`] instance;
893
- - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
894
- shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
895
- cache format.
896
-
897
- The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
898
- legacy cache format will be returned.
899
-
900
- If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
901
- have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
902
- of shape `(batch_size, sequence_length)`.
903
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
904
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
905
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
906
- model's internal embedding lookup matrix.
907
- use_cache (`bool`, *optional*):
908
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
909
- `past_key_values`).
910
- output_attentions (`bool`, *optional*):
911
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
912
- tensors for more detail.
913
- output_hidden_states (`bool`, *optional*):
914
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
915
- more detail.
916
- return_dict (`bool`, *optional*):
917
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
918
- """
919
-
920
-
921
- @add_start_docstrings(
922
- "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
923
- QWEN2_START_DOCSTRING,
924
- )
925
- class Qwen2Model(Qwen2PreTrainedModel):
926
- """
927
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
928
-
929
- Args:
930
- config: Qwen2Config
931
- """
932
-
933
- def __init__(self, config: Qwen2Config):
934
- super().__init__(config)
935
- self.padding_idx = config.pad_token_id
936
- self.vocab_size = config.vocab_size
937
-
938
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
939
- self.layers = nn.ModuleList(
940
- [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
941
- )
942
- self._attn_implementation = config._attn_implementation
943
- self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
944
-
945
- self.gradient_checkpointing = False
946
- # Initialize weights and apply final processing
947
- self.post_init()
948
-
949
- def get_input_embeddings(self):
950
- return self.embed_tokens
951
-
952
- def set_input_embeddings(self, value):
953
- self.embed_tokens = value
954
-
955
- @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
956
- def forward(
957
- self,
958
- input_ids: torch.LongTensor = None,
959
- attention_mask: Optional[torch.Tensor] = None,
960
- position_ids: Optional[torch.LongTensor] = None,
961
- past_key_values: Optional[List[torch.FloatTensor]] = None,
962
- inputs_embeds: Optional[torch.FloatTensor] = None,
963
- use_cache: Optional[bool] = None,
964
- output_attentions: Optional[bool] = None,
965
- output_hidden_states: Optional[bool] = None,
966
- return_dict: Optional[bool] = None,
967
- labels: Optional[torch.LongTensor] = None,
968
- is_causal: Optional[bool] = False,
969
- ) -> Union[Tuple, BaseModelOutputWithPast]:
970
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
971
- output_hidden_states = (
972
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
973
- )
974
- use_cache = use_cache if use_cache is not None else self.config.use_cache
975
-
976
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
977
-
978
- # retrieve input_ids and inputs_embeds
979
- if input_ids is not None and inputs_embeds is not None:
980
- raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
981
- elif input_ids is not None:
982
- batch_size, seq_length = input_ids.shape
983
- elif inputs_embeds is not None:
984
- batch_size, seq_length, _ = inputs_embeds.shape
985
- else:
986
- raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
987
-
988
- if self.gradient_checkpointing and self.training:
989
- if use_cache:
990
- logger.warning_once(
991
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
992
- )
993
- use_cache = False
994
-
995
- past_key_values_length = 0
996
-
997
- if use_cache:
998
- use_legacy_cache = not isinstance(past_key_values, Cache)
999
- if use_legacy_cache:
1000
- past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1001
- past_key_values_length = past_key_values.get_usable_length(seq_length)
1002
-
1003
- if position_ids is None:
1004
- device = input_ids.device if input_ids is not None else inputs_embeds.device
1005
- position_ids = torch.arange(
1006
- past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1007
- )
1008
- position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1009
- else:
1010
- position_ids = position_ids.view(-1, seq_length).long()
1011
-
1012
- if inputs_embeds is None:
1013
- inputs_embeds = self.embed_tokens(input_ids)
1014
-
1015
- if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
1016
- is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1017
- if is_padding_right:
1018
- raise ValueError(
1019
- "You are attempting to perform batched generation with padding_side='right'"
1020
- " this may lead to unexpected behaviour for Flash Attention version of Qwen2. Make sure to "
1021
- " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1022
- )
1023
-
1024
- if self._attn_implementation == "flash_attention_2":
1025
- # 2d mask is passed through the layers
1026
- attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1027
- elif self._attn_implementation == "sdpa" and not output_attentions:
1028
- # output_attentions=True can not be supported when using SDPA, and we fall back on
1029
- # the manual implementation that requires a 4D causal mask in all cases.
1030
- if is_causal:
1031
- attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1032
- attention_mask,
1033
- (batch_size, seq_length),
1034
- inputs_embeds,
1035
- past_key_values_length,
1036
- )
1037
- else:
1038
- attention_mask = _prepare_4d_attention_mask_for_sdpa(
1039
- attention_mask, inputs_embeds.dtype
1040
- )
1041
- else:
1042
- # 4d mask is passed through the layers
1043
- if is_causal:
1044
- # Causal mask with -3.3895e+38 where no attention should be
1045
- attention_mask = _prepare_4d_causal_attention_mask(
1046
- attention_mask,
1047
- (batch_size, seq_length),
1048
- inputs_embeds,
1049
- past_key_values_length,
1050
- sliding_window=self.config.sliding_window,
1051
- )
1052
- else:
1053
- # Shape: batch_size, 1, query_length, key_value_length
1054
- attention_mask = _prepare_4d_attention_mask(
1055
- attention_mask, inputs_embeds.dtype
1056
- )
1057
-
1058
- hidden_states = inputs_embeds
1059
-
1060
- # decoder layers
1061
- all_hidden_states = () if output_hidden_states else None
1062
- all_self_attns = () if output_attentions else None
1063
- next_decoder_cache = None
1064
-
1065
- for decoder_layer in self.layers:
1066
- if output_hidden_states:
1067
- all_hidden_states += (hidden_states,)
1068
-
1069
- if self.gradient_checkpointing and self.training:
1070
- layer_outputs = self._gradient_checkpointing_func(
1071
- decoder_layer.__call__,
1072
- hidden_states,
1073
- attention_mask,
1074
- position_ids,
1075
- past_key_values,
1076
- output_attentions,
1077
- use_cache,
1078
- is_causal,
1079
- )
1080
- else:
1081
- layer_outputs = decoder_layer(
1082
- hidden_states,
1083
- attention_mask=attention_mask,
1084
- position_ids=position_ids,
1085
- past_key_value=past_key_values,
1086
- output_attentions=output_attentions,
1087
- use_cache=use_cache,
1088
- is_causal=is_causal,
1089
- )
1090
-
1091
- hidden_states = layer_outputs[0]
1092
-
1093
- if use_cache:
1094
- next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1095
-
1096
- if output_attentions:
1097
- all_self_attns += (layer_outputs[1],)
1098
-
1099
- hidden_states = self.norm(hidden_states)
1100
-
1101
- # add hidden states from the last decoder layer
1102
- if output_hidden_states:
1103
- all_hidden_states += (hidden_states,)
1104
-
1105
- next_cache = None
1106
- if use_cache:
1107
- next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1108
-
1109
- if not return_dict:
1110
- return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1111
- return BaseModelOutputWithPast(
1112
- last_hidden_state=hidden_states,
1113
- past_key_values=next_cache,
1114
- hidden_states=all_hidden_states,
1115
- attentions=all_self_attns,
1116
- )
1117
-
1118
-
1119
- class Qwen2ForCausalLM(Qwen2PreTrainedModel):
1120
- _tied_weights_keys = ["lm_head.weight"]
1121
-
1122
- def __init__(self, config):
1123
- super().__init__(config)
1124
- self.model = Qwen2Model(config)
1125
- self.vocab_size = config.vocab_size
1126
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1127
-
1128
- # Initialize weights and apply final processing
1129
- self.post_init()
1130
-
1131
- def get_input_embeddings(self):
1132
- return self.model.embed_tokens
1133
-
1134
- def set_input_embeddings(self, value):
1135
- self.model.embed_tokens = value
1136
-
1137
- def get_output_embeddings(self):
1138
- return self.lm_head
1139
-
1140
- def set_output_embeddings(self, new_embeddings):
1141
- self.lm_head = new_embeddings
1142
-
1143
- def set_decoder(self, decoder):
1144
- self.model = decoder
1145
-
1146
- def get_decoder(self):
1147
- return self.model
1148
-
1149
- @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1150
- @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1151
- def forward(
1152
- self,
1153
- input_ids: torch.LongTensor = None,
1154
- attention_mask: Optional[torch.Tensor] = None,
1155
- position_ids: Optional[torch.LongTensor] = None,
1156
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1157
- inputs_embeds: Optional[torch.FloatTensor] = None,
1158
- labels: Optional[torch.LongTensor] = None,
1159
- use_cache: Optional[bool] = None,
1160
- output_attentions: Optional[bool] = None,
1161
- output_hidden_states: Optional[bool] = None,
1162
- return_dict: Optional[bool] = None,
1163
- is_causal: Optional[bool] = False,
1164
- ) -> Union[Tuple, CausalLMOutputWithPast]:
1165
- r"""
1166
- Args:
1167
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1168
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1169
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1170
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1171
-
1172
- Returns:
1173
-
1174
- Example:
1175
-
1176
- ```python
1177
- >>> from transformers import AutoTokenizer, Qwen2ForCausalLM
1178
-
1179
- >>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1180
- >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1181
-
1182
- >>> prompt = "Hey, are you conscious? Can you talk to me?"
1183
- >>> inputs = tokenizer(prompt, return_tensors="pt")
1184
-
1185
- >>> # Generate
1186
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1187
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1188
- "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1189
- ```"""
1190
-
1191
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1192
- output_hidden_states = (
1193
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1194
- )
1195
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1196
-
1197
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1198
- outputs = self.model(
1199
- input_ids=input_ids,
1200
- attention_mask=attention_mask,
1201
- position_ids=position_ids,
1202
- past_key_values=past_key_values,
1203
- inputs_embeds=inputs_embeds,
1204
- use_cache=use_cache,
1205
- output_attentions=output_attentions,
1206
- output_hidden_states=output_hidden_states,
1207
- return_dict=return_dict,
1208
- is_causal=is_causal,
1209
- )
1210
-
1211
- hidden_states = outputs[0]
1212
- logits = self.lm_head(hidden_states)
1213
- logits = logits.float()
1214
-
1215
- loss = None
1216
- if labels is not None:
1217
- # Shift so that tokens < n predict n
1218
- shift_logits = logits[..., :-1, :].contiguous()
1219
- shift_labels = labels[..., 1:].contiguous()
1220
- # Flatten the tokens
1221
- loss_fct = CrossEntropyLoss()
1222
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
1223
- shift_labels = shift_labels.view(-1)
1224
- # Enable model parallelism
1225
- shift_labels = shift_labels.to(shift_logits.device)
1226
- loss = loss_fct(shift_logits, shift_labels)
1227
-
1228
- if not return_dict:
1229
- output = (logits,) + outputs[1:]
1230
- return (loss,) + output if loss is not None else output
1231
-
1232
- return CausalLMOutputWithPast(
1233
- loss=loss,
1234
- logits=logits,
1235
- past_key_values=outputs.past_key_values,
1236
- hidden_states=outputs.hidden_states,
1237
- attentions=outputs.attentions,
1238
- )
1239
-
1240
- def prepare_inputs_for_generation(
1241
- self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1242
- ):
1243
- # Omit tokens covered by past_key_values
1244
- if past_key_values is not None:
1245
- if isinstance(past_key_values, Cache):
1246
- cache_length = past_key_values.get_seq_length()
1247
- past_length = past_key_values.seen_tokens
1248
- max_cache_length = past_key_values.get_max_length()
1249
- else:
1250
- cache_length = past_length = past_key_values[0][0].shape[2]
1251
- max_cache_length = None
1252
-
1253
- # Keep only the unprocessed tokens:
1254
- # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1255
- # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1256
- # input)
1257
- if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1258
- input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1259
- # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1260
- # input_ids based on the past_length.
1261
- elif past_length < input_ids.shape[1]:
1262
- input_ids = input_ids[:, past_length:]
1263
- # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1264
-
1265
- # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1266
- if (
1267
- max_cache_length is not None
1268
- and attention_mask is not None
1269
- and cache_length + input_ids.shape[1] > max_cache_length
1270
- ):
1271
- attention_mask = attention_mask[:, -max_cache_length:]
1272
-
1273
- position_ids = kwargs.get("position_ids", None)
1274
- if attention_mask is not None and position_ids is None:
1275
- # create position_ids on the fly for batch generation
1276
- position_ids = attention_mask.long().cumsum(-1) - 1
1277
- position_ids.masked_fill_(attention_mask == 0, 1)
1278
- if past_key_values:
1279
- position_ids = position_ids[:, -input_ids.shape[1] :]
1280
-
1281
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1282
- if inputs_embeds is not None and past_key_values is None:
1283
- model_inputs = {"inputs_embeds": inputs_embeds}
1284
- else:
1285
- model_inputs = {"input_ids": input_ids}
1286
-
1287
- model_inputs.update(
1288
- {
1289
- "position_ids": position_ids,
1290
- "past_key_values": past_key_values,
1291
- "use_cache": kwargs.get("use_cache"),
1292
- "attention_mask": attention_mask,
1293
- }
1294
- )
1295
- return model_inputs
1296
-
1297
- @staticmethod
1298
- def _reorder_cache(past_key_values, beam_idx):
1299
- reordered_past = ()
1300
- for layer_past in past_key_values:
1301
- reordered_past += (
1302
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1303
- )
1304
- return reordered_past
1305
-
1306
-
1307
- @add_start_docstrings(
1308
- """
1309
- The Qwen2 Model transformer with a sequence classification head on top (linear layer).
1310
-
1311
- [`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1312
- (e.g. GPT-2) do.
1313
-
1314
- Since it does classification on the last token, it requires to know the position of the last token. If a
1315
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1316
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1317
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1318
- each row of the batch).
1319
- """,
1320
- QWEN2_START_DOCSTRING,
1321
- )
1322
- class Qwen2ForSequenceClassification(Qwen2PreTrainedModel):
1323
- def __init__(self, config):
1324
- super().__init__(config)
1325
- self.num_labels = config.num_labels
1326
- self.model = Qwen2Model(config)
1327
- self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1328
-
1329
- # Initialize weights and apply final processing
1330
- self.post_init()
1331
-
1332
- def get_input_embeddings(self):
1333
- return self.model.embed_tokens
1334
-
1335
- def set_input_embeddings(self, value):
1336
- self.model.embed_tokens = value
1337
-
1338
- @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1339
- def forward(
1340
- self,
1341
- input_ids: torch.LongTensor = None,
1342
- attention_mask: Optional[torch.Tensor] = None,
1343
- position_ids: Optional[torch.LongTensor] = None,
1344
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1345
- inputs_embeds: Optional[torch.FloatTensor] = None,
1346
- labels: Optional[torch.LongTensor] = None,
1347
- use_cache: Optional[bool] = None,
1348
- output_attentions: Optional[bool] = None,
1349
- output_hidden_states: Optional[bool] = None,
1350
- return_dict: Optional[bool] = None,
1351
- is_causal: Optional[bool] = True,
1352
- ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1353
- r"""
1354
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1355
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1356
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1357
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1358
- """
1359
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1360
-
1361
- transformer_outputs = self.model(
1362
- input_ids,
1363
- attention_mask=attention_mask,
1364
- position_ids=position_ids,
1365
- past_key_values=past_key_values,
1366
- inputs_embeds=inputs_embeds,
1367
- use_cache=use_cache,
1368
- output_attentions=output_attentions,
1369
- output_hidden_states=output_hidden_states,
1370
- return_dict=return_dict,
1371
- is_causal=is_causal,
1372
- )
1373
- hidden_states = transformer_outputs[0]
1374
- logits = self.score(hidden_states)
1375
-
1376
- if input_ids is not None:
1377
- batch_size = input_ids.shape[0]
1378
- else:
1379
- batch_size = inputs_embeds.shape[0]
1380
-
1381
- if self.config.pad_token_id is None and batch_size != 1:
1382
- raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1383
- if self.config.pad_token_id is None:
1384
- sequence_lengths = -1
1385
- else:
1386
- if input_ids is not None:
1387
- # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1388
- sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1389
- sequence_lengths = sequence_lengths % input_ids.shape[-1]
1390
- sequence_lengths = sequence_lengths.to(logits.device)
1391
- else:
1392
- sequence_lengths = -1
1393
-
1394
- pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1395
-
1396
- loss = None
1397
- if labels is not None:
1398
- labels = labels.to(logits.device)
1399
- if self.config.problem_type is None:
1400
- if self.num_labels == 1:
1401
- self.config.problem_type = "regression"
1402
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1403
- self.config.problem_type = "single_label_classification"
1404
- else:
1405
- self.config.problem_type = "multi_label_classification"
1406
-
1407
- if self.config.problem_type == "regression":
1408
- loss_fct = MSELoss()
1409
- if self.num_labels == 1:
1410
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1411
- else:
1412
- loss = loss_fct(pooled_logits, labels)
1413
- elif self.config.problem_type == "single_label_classification":
1414
- loss_fct = CrossEntropyLoss()
1415
- loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1416
- elif self.config.problem_type == "multi_label_classification":
1417
- loss_fct = BCEWithLogitsLoss()
1418
- loss = loss_fct(pooled_logits, labels)
1419
- if not return_dict:
1420
- output = (pooled_logits,) + transformer_outputs[1:]
1421
- return ((loss,) + output) if loss is not None else output
1422
-
1423
- return SequenceClassifierOutputWithPast(
1424
- loss=loss,
1425
- logits=pooled_logits,
1426
- past_key_values=transformer_outputs.past_key_values,
1427
- hidden_states=transformer_outputs.hidden_states,
1428
- attentions=transformer_outputs.attentions,
1429
- )
 
1
+ from transformers.models.qwen2.modeling_qwen2 import *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tokenization_qwen.py CHANGED
@@ -1,267 +1 @@
1
-
2
- from typing import List, Optional
3
- from transformers.models.qwen2.tokenization_qwen2 import Qwen2Tokenizer as OriginalQwen2Tokenizer
4
- from transformers.models.qwen2.tokenization_qwen2_fast import Qwen2TokenizerFast as OriginalQwen2TokenizerFast
5
- from tokenizers import processors
6
-
7
- VOCAB_FILES_NAMES = {
8
- "vocab_file": "vocab.json",
9
- "merges_file": "merges.txt",
10
- "tokenizer_file": "tokenizer.json",
11
- }
12
-
13
- class Qwen2Tokenizer(OriginalQwen2Tokenizer):
14
- """
15
- Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding.
16
-
17
- Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
18
- be encoded differently whether it is at the beginning of the sentence (without space) or not:
19
-
20
- ```python
21
- >>> from transformers import Qwen2Tokenizer
22
-
23
- >>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer")
24
- >>> tokenizer("Hello world")["input_ids"]
25
- [9707, 1879]
26
-
27
- >>> tokenizer(" Hello world")["input_ids"]
28
- [21927, 1879]
29
- ```
30
- This is expected.
31
-
32
- You should not use GPT2Tokenizer instead, because of the different pretokenization rules.
33
-
34
- This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
35
- this superclass for more information regarding those methods.
36
-
37
- Args:
38
- vocab_file (`str`):
39
- Path to the vocabulary file.
40
- merges_file (`str`):
41
- Path to the merges file.
42
- errors (`str`, *optional*, defaults to `"replace"`):
43
- Paradigm to follow when decoding bytes to UTF-8. See
44
- [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
45
- unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
46
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
47
- token instead.
48
- bos_token (`str`, *optional*):
49
- The beginning of sequence token. Not applicable for this tokenizer.
50
- eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
51
- The end of sequence token.
52
- pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
53
- The token used for padding, for example when batching sequences of different lengths.
54
- clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
55
- Whether or not the model should cleanup the spaces that were added when splitting the input text during the
56
- tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces.
57
- split_special_tokens (`bool`, *optional*, defaults to `False`):
58
- Whether or not the special tokens should be split during the tokenization process. The default behavior is
59
- to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") =
60
- ['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<',
61
- '|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment.
62
- add_eos_token (`bool`, *optional*, defaults to `False`):
63
- Whether or not to add an `eos_token` at the end of sequences.
64
- """
65
-
66
- def __init__(
67
- self,
68
- vocab_file,
69
- merges_file,
70
- errors="replace",
71
- unk_token="<|endoftext|>",
72
- bos_token=None,
73
- eos_token="<|endoftext|>",
74
- pad_token="<|endoftext|>",
75
- clean_up_tokenization_spaces=False,
76
- split_special_tokens=False,
77
- add_eos_token=False,
78
- **kwargs,
79
- ):
80
- # The add_eos_token code was inspired by the LlamaTokenizer
81
- self.add_eos_token = add_eos_token
82
-
83
- super().__init__(
84
- vocab_file=vocab_file,
85
- merges_file=merges_file,
86
- errors=errors,
87
- unk_token=unk_token,
88
- bos_token=bos_token,
89
- eos_token=eos_token,
90
- pad_token=pad_token,
91
- clean_up_tokenization_spaces=clean_up_tokenization_spaces,
92
- split_special_tokens=split_special_tokens,
93
- add_eos_token=add_eos_token,
94
- **kwargs,
95
- )
96
-
97
- def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
98
- eos_token_id = [self.eos_token_id] if self.add_eos_token else []
99
-
100
- output = token_ids_0 + eos_token_id
101
-
102
- if token_ids_1 is not None:
103
- output = output + token_ids_1 + eos_token_id
104
-
105
- return output
106
-
107
- def get_special_tokens_mask(
108
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
109
- ) -> List[int]:
110
- """
111
- Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
112
- special tokens using the tokenizer `prepare_for_model` method.
113
-
114
- Args:
115
- token_ids_0 (`List[int]`):
116
- List of IDs.
117
- token_ids_1 (`List[int]`, *optional*):
118
- Optional second list of IDs for sequence pairs.
119
- already_has_special_tokens (`bool`, *optional*, defaults to `False`):
120
- Whether or not the token list is already formatted with special tokens for the model.
121
-
122
- Returns:
123
- `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
124
- """
125
- if already_has_special_tokens:
126
- return super().get_special_tokens_mask(
127
- token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
128
- )
129
-
130
- eos_token_id = [1] if self.add_eos_token else []
131
-
132
- if token_ids_1 is None:
133
- return ([0] * len(token_ids_0)) + eos_token_id
134
- return (
135
- ([0] * len(token_ids_0))
136
- + eos_token_id
137
- + ([0] * len(token_ids_1))
138
- + eos_token_id
139
- )
140
-
141
- def create_token_type_ids_from_sequences(
142
- self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
143
- ) -> List[int]:
144
- """
145
- Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
146
- sequence pair mask has the following format:
147
-
148
- ```
149
- 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
150
- | first sequence | second sequence |
151
- ```
152
-
153
- if token_ids_1 is None, only returns the first portion of the mask (0s).
154
-
155
- Args:
156
- token_ids_0 (`List[int]`):
157
- List of ids.
158
- token_ids_1 (`List[int]`, *optional*):
159
- Optional second list of IDs for sequence pairs.
160
-
161
- Returns:
162
- `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
163
- """
164
- eos_token_id = [self.eos_token_id] if self.add_eos_token else []
165
-
166
- output = [0] * len(token_ids_0 + eos_token_id)
167
-
168
- if token_ids_1 is not None:
169
- output += [1] * len(token_ids_1 + eos_token_id)
170
-
171
- return output
172
-
173
- class Qwen2TokenizerFast(OriginalQwen2TokenizerFast):
174
- """
175
- Construct a "fast" Qwen2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
176
- Byte-Pair-Encoding.
177
-
178
- Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
179
- be encoded differently whether it is at the beginning of the sentence (without space) or not:
180
-
181
- ```python
182
- >>> from transformers import Qwen2TokenizerFast
183
-
184
- >>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer")
185
- >>> tokenizer("Hello world")["input_ids"]
186
- [9707, 1879]
187
-
188
- >>> tokenizer(" Hello world")["input_ids"]
189
- [21927, 1879]
190
- ```
191
- This is expected.
192
-
193
- This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
194
- refer to this superclass for more information regarding those methods.
195
-
196
- Args:
197
- vocab_file (`str`, *optional*):
198
- Path to the vocabulary file.
199
- merges_file (`str`, *optional*):
200
- Path to the merges file.
201
- tokenizer_file (`str`, *optional*):
202
- Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
203
- contains everything needed to load the tokenizer.
204
- unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
205
- The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
206
- token instead. Not applicable to this tokenizer.
207
- bos_token (`str`, *optional*):
208
- The beginning of sequence token. Not applicable for this tokenizer.
209
- eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
210
- The end of sequence token.
211
- pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
212
- The token used for padding, for example when batching sequences of different lengths.
213
- add_eos_token (`bool`, *optional*, defaults to `False`):
214
- Whether or not to add an `eos_token` at the end of sequences.
215
- """
216
-
217
- slow_tokenizer_class = Qwen2Tokenizer
218
- padding_side = "left"
219
-
220
- def __init__(
221
- self,
222
- vocab_file=None,
223
- merges_file=None,
224
- tokenizer_file=None,
225
- unk_token="<|endoftext|>",
226
- bos_token=None,
227
- eos_token="<|endoftext|>",
228
- pad_token="<|endoftext|>",
229
- add_eos_token=False,
230
- **kwargs,
231
- ):
232
- super().__init__(
233
- vocab_file=vocab_file,
234
- merges_file=merges_file,
235
- tokenizer_file=tokenizer_file,
236
- unk_token=unk_token,
237
- bos_token=bos_token,
238
- eos_token=eos_token,
239
- pad_token=pad_token,
240
- **kwargs,
241
- )
242
-
243
- self._add_eos_token = add_eos_token
244
- self.update_post_processor()
245
-
246
- def update_post_processor(self):
247
- """
248
- Updates the underlying post processor with the current `eos_token`.
249
- """
250
- eos = self.eos_token
251
- eos_token_id = self.eos_token_id
252
- if eos is None and self.add_eos_token:
253
- raise ValueError("add_eos_token = True but eos_token = None")
254
-
255
- single = f"$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
256
- pair = f"{single} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
257
-
258
- special_tokens = []
259
- if self.add_eos_token:
260
- special_tokens.append((eos, eos_token_id))
261
- self._tokenizer.post_processor = processors.TemplateProcessing(
262
- single=single, pair=pair, special_tokens=special_tokens
263
- )
264
-
265
- @property
266
- def add_eos_token(self):
267
- return self._add_eos_token
 
1
+ from transformers.models.qwen2.modeling_qwen2 import *