See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: JackFram/llama-68m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 623d9787d7fd7d0e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/623d9787d7fd7d0e_train_data.json
type:
field_instruction: text
field_output: title
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 400
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/31e2825d-8aba-44fe-a4fe-feb5747a2fa3
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 143481
micro_batch_size: 2
mlflow_experiment_name: /tmp/623d9787d7fd7d0e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 400
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: af6de128-8865-42e8-800b-ff2d2b1acccd
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: af6de128-8865-42e8-800b-ff2d2b1acccd
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
31e2825d-8aba-44fe-a4fe-feb5747a2fa3
This model is a fine-tuned version of JackFram/llama-68m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0203
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 38999
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.5979 | 0.0003 | 1 | 2.4808 |
0.0077 | 0.1026 | 400 | 0.0437 |
0.0022 | 0.2051 | 800 | 0.0329 |
0.0124 | 0.3077 | 1200 | 0.0268 |
0.002 | 0.4103 | 1600 | 0.0241 |
0.0021 | 0.5128 | 2000 | 0.0237 |
0.0011 | 0.6154 | 2400 | 0.0174 |
0.0011 | 0.7179 | 2800 | 0.0200 |
0.0043 | 0.8205 | 3200 | 0.0167 |
0.0027 | 0.9231 | 3600 | 0.0173 |
0.0016 | 1.0256 | 4000 | 0.0203 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/31e2825d-8aba-44fe-a4fe-feb5747a2fa3
Base model
JackFram/llama-68m