Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen2.5-1.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 629ba27a4fc9a771_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/629ba27a4fc9a771_train_data.json
  type:
    field_instruction: init_prompt
    field_output: init_response
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/38d4e54c-cfe2-48bb-8365-313dfb7b276e
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1980
micro_batch_size: 4
mlflow_experiment_name: /tmp/629ba27a4fc9a771_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 39c85264-2e28-4ba8-ba2a-9c48fbcf4c19
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 39c85264-2e28-4ba8-ba2a-9c48fbcf4c19
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

38d4e54c-cfe2-48bb-8365-313dfb7b276e

This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3069

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 1980

Training results

Training Loss Epoch Step Validation Loss
0.9532 0.0008 1 1.2198
0.5792 0.0757 100 0.5988
0.5419 0.1513 200 0.5516
0.5068 0.2270 300 0.5198
0.5463 0.3027 400 0.4919
0.5244 0.3784 500 0.4679
0.3877 0.4540 600 0.4452
0.4547 0.5297 700 0.4257
0.4216 0.6054 800 0.4028
0.4578 0.6810 900 0.3898
0.3696 0.7567 1000 0.3700
0.4146 0.8324 1100 0.3560
0.3208 0.9081 1200 0.3429
0.3825 0.9837 1300 0.3315
0.2358 1.0594 1400 0.3249
0.2111 1.1351 1500 0.3181
0.1772 1.2107 1600 0.3129
0.2073 1.2864 1700 0.3100
0.2569 1.3621 1800 0.3078
0.2343 1.4378 1900 0.3069

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Alphatao/38d4e54c-cfe2-48bb-8365-313dfb7b276e

Base model

Qwen/Qwen2.5-1.5B
Adapter
(420)
this model