See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-1.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 629ba27a4fc9a771_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/629ba27a4fc9a771_train_data.json
type:
field_instruction: init_prompt
field_output: init_response
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/38d4e54c-cfe2-48bb-8365-313dfb7b276e
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1980
micro_batch_size: 4
mlflow_experiment_name: /tmp/629ba27a4fc9a771_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 39c85264-2e28-4ba8-ba2a-9c48fbcf4c19
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 39c85264-2e28-4ba8-ba2a-9c48fbcf4c19
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
38d4e54c-cfe2-48bb-8365-313dfb7b276e
This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3069
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1980
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9532 | 0.0008 | 1 | 1.2198 |
0.5792 | 0.0757 | 100 | 0.5988 |
0.5419 | 0.1513 | 200 | 0.5516 |
0.5068 | 0.2270 | 300 | 0.5198 |
0.5463 | 0.3027 | 400 | 0.4919 |
0.5244 | 0.3784 | 500 | 0.4679 |
0.3877 | 0.4540 | 600 | 0.4452 |
0.4547 | 0.5297 | 700 | 0.4257 |
0.4216 | 0.6054 | 800 | 0.4028 |
0.4578 | 0.6810 | 900 | 0.3898 |
0.3696 | 0.7567 | 1000 | 0.3700 |
0.4146 | 0.8324 | 1100 | 0.3560 |
0.3208 | 0.9081 | 1200 | 0.3429 |
0.3825 | 0.9837 | 1300 | 0.3315 |
0.2358 | 1.0594 | 1400 | 0.3249 |
0.2111 | 1.1351 | 1500 | 0.3181 |
0.1772 | 1.2107 | 1600 | 0.3129 |
0.2073 | 1.2864 | 1700 | 0.3100 |
0.2569 | 1.3621 | 1800 | 0.3078 |
0.2343 | 1.4378 | 1900 | 0.3069 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support