Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen2.5-1.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 376665f92f9f4ce1_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/376665f92f9f4ce1_train_data.json
  type:
    field_instruction: query
    field_output: answers
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/50400ef4-fbd3-4f6a-b055-a40e8d29704f
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1980
micro_batch_size: 4
mlflow_experiment_name: /tmp/376665f92f9f4ce1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: d55156ab-bed0-411c-9fe5-7615dc686893
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d55156ab-bed0-411c-9fe5-7615dc686893
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

50400ef4-fbd3-4f6a-b055-a40e8d29704f

This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1799

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 1980

Training results

Training Loss Epoch Step Validation Loss
1.6915 0.0007 1 1.6773
0.25 0.0686 100 0.2096
0.1806 0.1372 200 0.2067
0.1653 0.2057 300 0.1999
0.1937 0.2743 400 0.1972
0.195 0.3429 500 0.1961
0.1756 0.4115 600 0.1939
0.1853 0.4801 700 0.1899
0.192 0.5486 800 0.1889
0.154 0.6172 900 0.1859
0.1712 0.6858 1000 0.1839
0.2527 0.7544 1100 0.1834
0.1433 0.8230 1200 0.1812
0.202 0.8916 1300 0.1785
0.1488 0.9601 1400 0.1780
0.1177 1.0287 1500 0.1787
0.1074 1.0973 1600 0.1799

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Alphatao/50400ef4-fbd3-4f6a-b055-a40e8d29704f

Base model

Qwen/Qwen2.5-1.5B
Adapter
(420)
this model