See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-1.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 6a67cd14306afa65_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/6a67cd14306afa65_train_data.json
type:
field_input: schema
field_instruction: question
field_output: cypher
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/56d3ea50-6039-40d4-9fc0-7daef7b67dda
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 4140
micro_batch_size: 4
mlflow_experiment_name: /tmp/6a67cd14306afa65_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 524a0a62-67eb-4359-bad2-51bcaeeb1570
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 524a0a62-67eb-4359-bad2-51bcaeeb1570
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
56d3ea50-6039-40d4-9fc0-7daef7b67dda
This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1067
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2598
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.531 | 0.0008 | 1 | 1.7833 |
0.1689 | 0.0770 | 100 | 0.2207 |
0.1654 | 0.1540 | 200 | 0.1798 |
0.1234 | 0.2310 | 300 | 0.1621 |
0.1609 | 0.3080 | 400 | 0.1573 |
0.1739 | 0.3850 | 500 | 0.1438 |
0.1142 | 0.4620 | 600 | 0.1419 |
0.0944 | 0.5390 | 700 | 0.1363 |
0.1433 | 0.6160 | 800 | 0.1366 |
0.1062 | 0.6930 | 900 | 0.1293 |
0.1382 | 0.7700 | 1000 | 0.1255 |
0.1003 | 0.8470 | 1100 | 0.1234 |
0.1454 | 0.9241 | 1200 | 0.1188 |
0.1326 | 1.0013 | 1300 | 0.1181 |
0.1031 | 1.0783 | 1400 | 0.1161 |
0.0339 | 1.1553 | 1500 | 0.1159 |
0.1357 | 1.2323 | 1600 | 0.1157 |
0.081 | 1.3093 | 1700 | 0.1137 |
0.1138 | 1.3863 | 1800 | 0.1127 |
0.0779 | 1.4633 | 1900 | 0.1114 |
0.0797 | 1.5403 | 2000 | 0.1093 |
0.0863 | 1.6173 | 2100 | 0.1086 |
0.059 | 1.6943 | 2200 | 0.1075 |
0.1495 | 1.7713 | 2300 | 0.1072 |
0.065 | 1.8483 | 2400 | 0.1069 |
0.1151 | 1.9253 | 2500 | 0.1067 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support