See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 614113b4f1a6b045_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/614113b4f1a6b045_train_data.json
type:
field_input: examples
field_instruction: func_desc
field_output: answers
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 400
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/a6f4ed88-0806-4935-9632-dbde555fae5c
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 4875
micro_batch_size: 2
mlflow_experiment_name: /tmp/614113b4f1a6b045_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 400
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 923afc99-aa10-4ac7-925a-f5275d76ccd4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 923afc99-aa10-4ac7-925a-f5275d76ccd4
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
a6f4ed88-0806-4935-9632-dbde555fae5c
This model is a fine-tuned version of MLP-KTLim/llama-3-Korean-Bllossom-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4071
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 4875
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3985 | 0.0002 | 1 | 2.2834 |
0.4249 | 0.0850 | 400 | 0.4947 |
0.7992 | 0.1700 | 800 | 0.4869 |
0.3926 | 0.2549 | 1200 | 0.4829 |
0.5273 | 0.3399 | 1600 | 0.4761 |
0.4743 | 0.4249 | 2000 | 0.4581 |
0.405 | 0.5099 | 2400 | 0.4388 |
0.4932 | 0.5948 | 2800 | 0.4350 |
0.3592 | 0.6798 | 3200 | 0.4227 |
0.3654 | 0.7648 | 3600 | 0.4171 |
0.3903 | 0.8498 | 4000 | 0.4110 |
0.509 | 0.9347 | 4400 | 0.4060 |
0.4469 | 1.0197 | 4800 | 0.4071 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for Alphatao/a6f4ed88-0806-4935-9632-dbde555fae5c
Base model
meta-llama/Meta-Llama-3-8B
Finetuned
MLP-KTLim/llama-3-Korean-Bllossom-8B