Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 614113b4f1a6b045_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/614113b4f1a6b045_train_data.json
  type:
    field_input: examples
    field_instruction: func_desc
    field_output: answers
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 400
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/a6f4ed88-0806-4935-9632-dbde555fae5c
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 4875
micro_batch_size: 2
mlflow_experiment_name: /tmp/614113b4f1a6b045_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 400
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 923afc99-aa10-4ac7-925a-f5275d76ccd4
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 923afc99-aa10-4ac7-925a-f5275d76ccd4
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

a6f4ed88-0806-4935-9632-dbde555fae5c

This model is a fine-tuned version of MLP-KTLim/llama-3-Korean-Bllossom-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4071

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 4875

Training results

Training Loss Epoch Step Validation Loss
1.3985 0.0002 1 2.2834
0.4249 0.0850 400 0.4947
0.7992 0.1700 800 0.4869
0.3926 0.2549 1200 0.4829
0.5273 0.3399 1600 0.4761
0.4743 0.4249 2000 0.4581
0.405 0.5099 2400 0.4388
0.4932 0.5948 2800 0.4350
0.3592 0.6798 3200 0.4227
0.3654 0.7648 3600 0.4171
0.3903 0.8498 4000 0.4110
0.509 0.9347 4400 0.4060
0.4469 1.0197 4800 0.4071

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Alphatao/a6f4ed88-0806-4935-9632-dbde555fae5c

Adapter
(339)
this model