See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Llama-3.2-1B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 1ba279f183337309_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/1ba279f183337309_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/c131672e-e94c-4ddc-a4e7-8b9339d6dd97
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2778
micro_batch_size: 4
mlflow_experiment_name: /tmp/1ba279f183337309_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 42ec8344-4e7f-44ae-abba-aec8960a0c35
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 42ec8344-4e7f-44ae-abba-aec8960a0c35
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
c131672e-e94c-4ddc-a4e7-8b9339d6dd97
This model is a fine-tuned version of unsloth/Llama-3.2-1B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8596
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2778
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0421 | 0.0005 | 1 | 2.2055 |
1.3315 | 0.0501 | 100 | 1.0804 |
1.1595 | 0.1002 | 200 | 1.0350 |
1.1229 | 0.1503 | 300 | 1.0188 |
1.115 | 0.2004 | 400 | 0.9978 |
1.1094 | 0.2505 | 500 | 0.9956 |
0.9105 | 0.3006 | 600 | 0.9812 |
1.1083 | 0.3507 | 700 | 0.9692 |
0.9175 | 0.4009 | 800 | 0.9570 |
1.1945 | 0.4510 | 900 | 0.9546 |
1.0475 | 0.5011 | 1000 | 0.9424 |
0.9024 | 0.5512 | 1100 | 0.9365 |
1.1053 | 0.6013 | 1200 | 0.9273 |
1.0829 | 0.6514 | 1300 | 0.9192 |
1.0007 | 0.7015 | 1400 | 0.9078 |
1.0743 | 0.7516 | 1500 | 0.9008 |
1.0054 | 0.8017 | 1600 | 0.8941 |
0.9514 | 0.8518 | 1700 | 0.8860 |
1.0254 | 0.9019 | 1800 | 0.8799 |
0.9989 | 0.9520 | 1900 | 0.8739 |
0.8056 | 1.0022 | 2000 | 0.8687 |
0.7755 | 1.0523 | 2100 | 0.8702 |
0.7177 | 1.1024 | 2200 | 0.8662 |
1.0004 | 1.1525 | 2300 | 0.8649 |
0.9104 | 1.2026 | 2400 | 0.8632 |
0.7172 | 1.2527 | 2500 | 0.8611 |
0.7679 | 1.3028 | 2600 | 0.8598 |
0.6684 | 1.3529 | 2700 | 0.8596 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support