Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Llama-3.2-1B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 1ba279f183337309_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/1ba279f183337309_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 400
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/c1eac2fa-e009-4d0d-a76a-fe9c5473b8e5
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 11709
micro_batch_size: 2
mlflow_experiment_name: /tmp/1ba279f183337309_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 400
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 42ec8344-4e7f-44ae-abba-aec8960a0c35
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 42ec8344-4e7f-44ae-abba-aec8960a0c35
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

c1eac2fa-e009-4d0d-a76a-fe9c5473b8e5

This model is a fine-tuned version of unsloth/Llama-3.2-1B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8032

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 11709

Training results

Training Loss Epoch Step Validation Loss
2.2251 0.0001 1 2.2504
1.2773 0.0501 400 0.9996
1.2287 0.1002 800 0.9545
0.9792 0.1503 1200 0.9459
1.1377 0.2004 1600 0.9358
1.2048 0.2505 2000 0.9271
0.8575 0.3006 2400 0.9126
0.9171 0.3508 2800 0.9057
1.0759 0.4009 3200 0.8975
1.3327 0.4510 3600 0.8905
1.0741 0.5011 4000 0.8816
0.9394 0.5512 4400 0.8777
1.2522 0.6013 4800 0.8720
1.2175 0.6514 5200 0.8741
0.7203 0.7015 5600 0.8580
1.0505 0.7516 6000 0.8442
0.5327 0.8017 6400 0.8421
0.8146 0.8518 6800 0.8367
1.0757 0.9019 7200 0.8325
1.0578 0.9521 7600 0.8256
0.7184 1.0022 8000 0.8198
0.4562 1.0523 8400 0.8184
0.8162 1.1024 8800 0.8134
1.3407 1.1525 9200 0.8119
0.8415 1.2027 9600 0.8094
0.9698 1.2528 10000 0.8063
0.5319 1.3029 10400 0.8047
0.369 1.3530 10800 0.8036
0.9067 1.4031 11200 0.8032
0.7255 1.4532 11600 0.8032

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Alphatao/c1eac2fa-e009-4d0d-a76a-fe9c5473b8e5

Adapter
(273)
this model