See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Llama-3.2-1B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 1ba279f183337309_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/1ba279f183337309_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 400
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/c1eac2fa-e009-4d0d-a76a-fe9c5473b8e5
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 11709
micro_batch_size: 2
mlflow_experiment_name: /tmp/1ba279f183337309_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 400
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 42ec8344-4e7f-44ae-abba-aec8960a0c35
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 42ec8344-4e7f-44ae-abba-aec8960a0c35
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
c1eac2fa-e009-4d0d-a76a-fe9c5473b8e5
This model is a fine-tuned version of unsloth/Llama-3.2-1B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8032
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 11709
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 2.2251 | 0.0001 | 1 | 2.2504 |
| 1.2773 | 0.0501 | 400 | 0.9996 |
| 1.2287 | 0.1002 | 800 | 0.9545 |
| 0.9792 | 0.1503 | 1200 | 0.9459 |
| 1.1377 | 0.2004 | 1600 | 0.9358 |
| 1.2048 | 0.2505 | 2000 | 0.9271 |
| 0.8575 | 0.3006 | 2400 | 0.9126 |
| 0.9171 | 0.3508 | 2800 | 0.9057 |
| 1.0759 | 0.4009 | 3200 | 0.8975 |
| 1.3327 | 0.4510 | 3600 | 0.8905 |
| 1.0741 | 0.5011 | 4000 | 0.8816 |
| 0.9394 | 0.5512 | 4400 | 0.8777 |
| 1.2522 | 0.6013 | 4800 | 0.8720 |
| 1.2175 | 0.6514 | 5200 | 0.8741 |
| 0.7203 | 0.7015 | 5600 | 0.8580 |
| 1.0505 | 0.7516 | 6000 | 0.8442 |
| 0.5327 | 0.8017 | 6400 | 0.8421 |
| 0.8146 | 0.8518 | 6800 | 0.8367 |
| 1.0757 | 0.9019 | 7200 | 0.8325 |
| 1.0578 | 0.9521 | 7600 | 0.8256 |
| 0.7184 | 1.0022 | 8000 | 0.8198 |
| 0.4562 | 1.0523 | 8400 | 0.8184 |
| 0.8162 | 1.1024 | 8800 | 0.8134 |
| 1.3407 | 1.1525 | 9200 | 0.8119 |
| 0.8415 | 1.2027 | 9600 | 0.8094 |
| 0.9698 | 1.2528 | 10000 | 0.8063 |
| 0.5319 | 1.3029 | 10400 | 0.8047 |
| 0.369 | 1.3530 | 10800 | 0.8036 |
| 0.9067 | 1.4031 | 11200 | 0.8032 |
| 0.7255 | 1.4532 | 11600 | 0.8032 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support