See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-1.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 376665f92f9f4ce1_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/376665f92f9f4ce1_train_data.json
type:
field_instruction: query
field_output: answers
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,4
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 33
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/e7334d33-b475-420e-bcfa-5698ede9d5ad
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 660.0
micro_batch_size: 4
mlflow_experiment_name: /tmp/376665f92f9f4ce1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 33
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: d55156ab-bed0-411c-9fe5-7615dc686893
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d55156ab-bed0-411c-9fe5-7615dc686893
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
e7334d33-b475-420e-bcfa-5698ede9d5ad
This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1819
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 660
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5377 | 0.0027 | 1 | 1.6769 |
0.2408 | 0.0905 | 33 | 0.2099 |
0.2016 | 0.1810 | 66 | 0.2014 |
0.2003 | 0.2715 | 99 | 0.1945 |
0.1945 | 0.3620 | 132 | 0.1928 |
0.1899 | 0.4525 | 165 | 0.1902 |
0.2069 | 0.5430 | 198 | 0.1875 |
0.1904 | 0.6335 | 231 | 0.1864 |
0.1828 | 0.7240 | 264 | 0.1844 |
0.1861 | 0.8145 | 297 | 0.1837 |
0.1527 | 0.9050 | 330 | 0.1814 |
0.1649 | 0.9955 | 363 | 0.1802 |
0.1623 | 1.0874 | 396 | 0.1822 |
0.1421 | 1.1779 | 429 | 0.1819 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support