Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen2.5-1.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d907d4756315f95f_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d907d4756315f95f_train_data.json
  type:
    field_input: content
    field_instruction: size
    field_output: hexsha
    field_system: avg_line_length
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/f6b40af7-b80f-4aab-843b-5c70dfe6d76b
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1325
micro_batch_size: 4
mlflow_experiment_name: /tmp/d907d4756315f95f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.01813433918468011
wandb_entity: null
wandb_mode: online
wandb_name: 445d78bc-0597-4fb1-9577-f0591d98ab7c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 445d78bc-0597-4fb1-9577-f0591d98ab7c
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

f6b40af7-b80f-4aab-843b-5c70dfe6d76b

This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0697

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 1325

Training results

Training Loss Epoch Step Validation Loss
4.0951 0.0001 1 4.0514
3.104 0.0118 100 3.0671
3.0842 0.0236 200 3.0707
3.0564 0.0355 300 3.0697

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
5
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Alphatao/f6b40af7-b80f-4aab-843b-5c70dfe6d76b

Base model

Qwen/Qwen2.5-1.5B
Adapter
(420)
this model