mdeberta-v3-base_regression_5_seed7_EN-NL
This model is a fine-tuned version of microsoft/mdeberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7577
- Mse: 2.9968
- Rmse: 1.7311
- Mae: 1.0105
- R2: 0.1535
- F1: 0.7670
- Precision: 0.7680
- Recall: 0.7706
- Accuracy: 0.7706
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Mse | Rmse | Mae | R2 | F1 | Precision | Recall | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|
1.2519 | 0.2141 | 100 | 1.1594 | 4.1315 | 2.0326 | 1.6228 | -0.1981 | 0.4761 | 0.3859 | 0.6212 | 0.6212 |
1.0733 | 0.4283 | 200 | 1.1166 | 3.7642 | 1.9401 | 1.5758 | -0.0916 | 0.4761 | 0.3859 | 0.6212 | 0.6212 |
1.0335 | 0.6424 | 300 | 1.0306 | 3.2716 | 1.8087 | 1.4571 | 0.0513 | 0.4761 | 0.3859 | 0.6212 | 0.6212 |
0.9534 | 0.8565 | 400 | 0.9582 | 3.1526 | 1.7756 | 1.3581 | 0.0858 | 0.4891 | 0.7036 | 0.6261 | 0.6261 |
0.888 | 1.0707 | 500 | 0.9281 | 3.2115 | 1.7921 | 1.3198 | 0.0687 | 0.6985 | 0.6987 | 0.7057 | 0.7057 |
0.7882 | 1.2848 | 600 | 0.9442 | 3.5282 | 1.8783 | 1.2709 | -0.0231 | 0.7014 | 0.7007 | 0.7069 | 0.7069 |
0.8021 | 1.4989 | 700 | 0.8890 | 3.2508 | 1.8030 | 1.2162 | 0.0573 | 0.6941 | 0.7203 | 0.7177 | 0.7177 |
0.7988 | 1.7131 | 800 | 0.8609 | 3.1586 | 1.7772 | 1.1885 | 0.0840 | 0.7191 | 0.7233 | 0.7286 | 0.7286 |
0.7778 | 1.9272 | 900 | 0.9033 | 3.3544 | 1.8315 | 1.2404 | 0.0273 | 0.7110 | 0.7105 | 0.7117 | 0.7117 |
0.7297 | 2.1413 | 1000 | 0.8501 | 3.1499 | 1.7748 | 1.1674 | 0.0865 | 0.7074 | 0.7265 | 0.7262 | 0.7262 |
0.6946 | 2.3555 | 1100 | 0.8471 | 3.1296 | 1.7691 | 1.1639 | 0.0924 | 0.7301 | 0.7320 | 0.7370 | 0.7370 |
0.6625 | 2.5696 | 1200 | 0.8546 | 3.2343 | 1.7984 | 1.1670 | 0.0621 | 0.7279 | 0.7275 | 0.7322 | 0.7322 |
0.6369 | 2.7837 | 1300 | 0.8263 | 3.1185 | 1.7659 | 1.1241 | 0.0956 | 0.7405 | 0.7410 | 0.7455 | 0.7455 |
0.7078 | 2.9979 | 1400 | 0.8317 | 3.1197 | 1.7663 | 1.1426 | 0.0953 | 0.7390 | 0.7388 | 0.7431 | 0.7431 |
0.6176 | 3.2120 | 1500 | 0.8638 | 3.3501 | 1.8303 | 1.1587 | 0.0285 | 0.7386 | 0.7391 | 0.7382 | 0.7382 |
0.6239 | 3.4261 | 1600 | 0.8189 | 3.0710 | 1.7524 | 1.1080 | 0.1094 | 0.7380 | 0.7385 | 0.7431 | 0.7431 |
0.5606 | 3.6403 | 1700 | 0.8098 | 3.0764 | 1.7540 | 1.0986 | 0.1079 | 0.7394 | 0.7425 | 0.7467 | 0.7467 |
0.5355 | 3.8544 | 1800 | 0.7916 | 3.0118 | 1.7354 | 1.0810 | 0.1266 | 0.7458 | 0.7489 | 0.7527 | 0.7527 |
0.6104 | 4.0685 | 1900 | 0.7980 | 3.0496 | 1.7463 | 1.0979 | 0.1156 | 0.7423 | 0.7487 | 0.7515 | 0.7515 |
0.5771 | 4.2827 | 2000 | 0.8151 | 3.0722 | 1.7528 | 1.0949 | 0.1091 | 0.7536 | 0.7549 | 0.7527 | 0.7527 |
0.5467 | 4.4968 | 2100 | 0.7598 | 2.8832 | 1.6980 | 1.0315 | 0.1639 | 0.7542 | 0.7626 | 0.7636 | 0.7636 |
0.5222 | 4.7109 | 2200 | 0.7667 | 2.9550 | 1.7190 | 1.0424 | 0.1431 | 0.7527 | 0.7570 | 0.7600 | 0.7600 |
0.5315 | 4.9251 | 2300 | 0.7775 | 3.0228 | 1.7386 | 1.0498 | 0.1234 | 0.7672 | 0.7667 | 0.7696 | 0.7696 |
0.5042 | 5.1392 | 2400 | 0.7787 | 3.0669 | 1.7513 | 1.0481 | 0.1106 | 0.7645 | 0.7642 | 0.7672 | 0.7672 |
0.498 | 5.3533 | 2500 | 0.8149 | 3.1733 | 1.7814 | 1.0917 | 0.0798 | 0.7572 | 0.7584 | 0.7563 | 0.7563 |
0.4974 | 5.5675 | 2600 | 0.8547 | 3.3892 | 1.8410 | 1.1258 | 0.0172 | 0.7445 | 0.7509 | 0.7419 | 0.7419 |
0.4836 | 5.7816 | 2700 | 0.7856 | 3.0545 | 1.7477 | 1.0457 | 0.1142 | 0.7651 | 0.7645 | 0.7660 | 0.7660 |
0.4966 | 5.9957 | 2800 | 0.7661 | 2.9881 | 1.7286 | 1.0183 | 0.1335 | 0.7560 | 0.7592 | 0.7624 | 0.7624 |
0.4538 | 6.2099 | 2900 | 0.8077 | 3.2099 | 1.7916 | 1.0736 | 0.0691 | 0.7610 | 0.7609 | 0.7612 | 0.7612 |
0.4556 | 6.4240 | 3000 | 0.7885 | 3.0860 | 1.7567 | 1.0473 | 0.1051 | 0.7619 | 0.7612 | 0.7636 | 0.7636 |
0.4755 | 6.6381 | 3100 | 0.8062 | 3.1728 | 1.7812 | 1.0724 | 0.0799 | 0.7633 | 0.7630 | 0.7636 | 0.7636 |
0.4596 | 6.8522 | 3200 | 0.7653 | 2.9699 | 1.7233 | 1.0317 | 0.1387 | 0.7610 | 0.7626 | 0.7660 | 0.7660 |
0.3947 | 7.0664 | 3300 | 0.7600 | 2.9592 | 1.7202 | 1.0137 | 0.1419 | 0.7669 | 0.7691 | 0.7720 | 0.7720 |
0.4214 | 7.2805 | 3400 | 0.7875 | 3.0891 | 1.7576 | 1.0527 | 0.1042 | 0.7692 | 0.7686 | 0.7708 | 0.7708 |
0.4254 | 7.4946 | 3500 | 0.7751 | 3.0288 | 1.7403 | 1.0348 | 0.1217 | 0.7640 | 0.7651 | 0.7684 | 0.7684 |
0.422 | 7.7088 | 3600 | 0.8033 | 3.1850 | 1.7847 | 1.0650 | 0.0764 | 0.7603 | 0.7607 | 0.7600 | 0.7600 |
0.4195 | 7.9229 | 3700 | 0.7491 | 2.8777 | 1.6964 | 1.0096 | 0.1655 | 0.7590 | 0.7656 | 0.7672 | 0.7672 |
0.4541 | 8.1370 | 3800 | 0.7874 | 3.0874 | 1.7571 | 1.0484 | 0.1047 | 0.7641 | 0.7636 | 0.7648 | 0.7648 |
0.3956 | 8.3512 | 3900 | 0.7601 | 2.9703 | 1.7234 | 1.0123 | 0.1386 | 0.7603 | 0.7628 | 0.7660 | 0.7660 |
0.3935 | 8.5653 | 4000 | 0.7703 | 3.0093 | 1.7347 | 1.0241 | 0.1273 | 0.7696 | 0.7692 | 0.7720 | 0.7720 |
0.4477 | 8.7794 | 4100 | 0.7655 | 2.9916 | 1.7296 | 1.0193 | 0.1324 | 0.7687 | 0.7681 | 0.7708 | 0.7708 |
0.3761 | 8.9936 | 4200 | 0.7610 | 2.9736 | 1.7244 | 1.0123 | 0.1377 | 0.7651 | 0.7663 | 0.7696 | 0.7696 |
0.3848 | 9.2077 | 4300 | 0.7811 | 3.0846 | 1.7563 | 1.0356 | 0.1055 | 0.7623 | 0.7616 | 0.7636 | 0.7636 |
0.3974 | 9.4218 | 4400 | 0.7632 | 2.9960 | 1.7309 | 1.0153 | 0.1312 | 0.7660 | 0.7663 | 0.7696 | 0.7696 |
0.3954 | 9.6360 | 4500 | 0.7726 | 3.0425 | 1.7443 | 1.0274 | 0.1177 | 0.7642 | 0.7635 | 0.7660 | 0.7660 |
0.3679 | 9.8501 | 4600 | 0.7671 | 3.0187 | 1.7374 | 1.0203 | 0.1246 | 0.7692 | 0.7690 | 0.7720 | 0.7720 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.19.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Amala3/mdeberta-v3-base_regression_5_seed7_EN-NL
Base model
microsoft/mdeberta-v3-base