class_scibert_nopretrain

This model is a fine-tuned version of AmedeoBonatti/nlp_te_mlm_scibert_tok on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1004
  • Accuracy: 0.8933

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 56 0.3029 0.88
No log 2.0 112 0.3203 0.8844
No log 3.0 168 0.4238 0.9067
No log 4.0 224 0.5721 0.8667
No log 5.0 280 0.6623 0.88
No log 6.0 336 0.6685 0.8933
No log 7.0 392 0.6864 0.9067
No log 8.0 448 0.7105 0.8978
0.0902 9.0 504 0.7304 0.8978
0.0902 10.0 560 0.7451 0.8978
0.0902 11.0 616 0.7603 0.8978
0.0902 12.0 672 0.7714 0.8978
0.0902 13.0 728 0.7845 0.8978
0.0902 14.0 784 0.7961 0.8978
0.0902 15.0 840 0.8059 0.8978
0.0902 16.0 896 0.8171 0.8978
0.0902 17.0 952 0.8258 0.8978
0.0001 18.0 1008 0.8337 0.8978
0.0001 19.0 1064 0.8420 0.8978
0.0001 20.0 1120 0.8510 0.8978
0.0001 21.0 1176 0.8590 0.8978
0.0001 22.0 1232 0.8681 0.8978
0.0001 23.0 1288 0.8738 0.8978
0.0001 24.0 1344 0.8802 0.8978
0.0001 25.0 1400 0.8858 0.8933
0.0001 26.0 1456 0.8928 0.8933
0.0 27.0 1512 0.9000 0.8933
0.0 28.0 1568 0.9057 0.8933
0.0 29.0 1624 0.9097 0.8933
0.0 30.0 1680 0.9170 0.8933
0.0 31.0 1736 0.9224 0.8933
0.0 32.0 1792 0.9259 0.8933
0.0 33.0 1848 0.9303 0.8933
0.0 34.0 1904 0.9361 0.8933
0.0 35.0 1960 0.9418 0.8933
0.0 36.0 2016 0.9477 0.8933
0.0 37.0 2072 0.9521 0.8933
0.0 38.0 2128 0.9558 0.8933
0.0 39.0 2184 0.9597 0.8933
0.0 40.0 2240 0.9645 0.8933
0.0 41.0 2296 0.9681 0.8933
0.0 42.0 2352 0.9722 0.8933
0.0 43.0 2408 0.9759 0.8933
0.0 44.0 2464 0.9797 0.8933
0.0 45.0 2520 0.9836 0.8933
0.0 46.0 2576 0.9874 0.8933
0.0 47.0 2632 0.9919 0.8933
0.0 48.0 2688 0.9952 0.8933
0.0 49.0 2744 0.9993 0.8933
0.0 50.0 2800 1.0033 0.8933
0.0 51.0 2856 1.0066 0.8933
0.0 52.0 2912 1.0109 0.8933
0.0 53.0 2968 1.0144 0.8933
0.0 54.0 3024 1.0177 0.8933
0.0 55.0 3080 1.0210 0.8933
0.0 56.0 3136 1.0242 0.8933
0.0 57.0 3192 1.0272 0.8933
0.0 58.0 3248 1.0315 0.8933
0.0 59.0 3304 1.0340 0.8933
0.0 60.0 3360 1.0364 0.8933
0.0 61.0 3416 1.0392 0.8933
0.0 62.0 3472 1.0423 0.8933
0.0 63.0 3528 1.0452 0.8933
0.0 64.0 3584 1.0475 0.8933
0.0 65.0 3640 1.0504 0.8933
0.0 66.0 3696 1.0529 0.8933
0.0 67.0 3752 1.0543 0.8933
0.0 68.0 3808 1.0578 0.8933
0.0 69.0 3864 1.0606 0.8933
0.0 70.0 3920 1.0629 0.8933
0.0 71.0 3976 1.0650 0.8933
0.0 72.0 4032 1.0666 0.8933
0.0 73.0 4088 1.0690 0.8933
0.0 74.0 4144 1.0712 0.8933
0.0 75.0 4200 1.0731 0.8933
0.0 76.0 4256 1.0751 0.8933
0.0 77.0 4312 1.0766 0.8933
0.0 78.0 4368 1.0784 0.8933
0.0 79.0 4424 1.0805 0.8933
0.0 80.0 4480 1.0822 0.8933
0.0 81.0 4536 1.0836 0.8933
0.0 82.0 4592 1.0860 0.8933
0.0 83.0 4648 1.0873 0.8933
0.0 84.0 4704 1.0888 0.8933
0.0 85.0 4760 1.0902 0.8933
0.0 86.0 4816 1.0916 0.8933
0.0 87.0 4872 1.0927 0.8933
0.0 88.0 4928 1.0937 0.8933
0.0 89.0 4984 1.0948 0.8933
0.0 90.0 5040 1.0959 0.8933
0.0 91.0 5096 1.0965 0.8933
0.0 92.0 5152 1.0972 0.8933
0.0 93.0 5208 1.0982 0.8933
0.0 94.0 5264 1.0988 0.8933
0.0 95.0 5320 1.0993 0.8933
0.0 96.0 5376 1.0998 0.8933
0.0 97.0 5432 1.1000 0.8933
0.0 98.0 5488 1.1001 0.8933
0.0 99.0 5544 1.1003 0.8933
0.0 100.0 5600 1.1004 0.8933

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.2.1
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
110M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for AmedeoBonatti/nlp_te_class_scibert_tok

Finetuned
(1)
this model