class_scibert_nopretrain
This model is a fine-tuned version of AmedeoBonatti/nlp_te_mlm_scibert_tok on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1004
- Accuracy: 0.8933
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 56 | 0.3029 | 0.88 |
No log | 2.0 | 112 | 0.3203 | 0.8844 |
No log | 3.0 | 168 | 0.4238 | 0.9067 |
No log | 4.0 | 224 | 0.5721 | 0.8667 |
No log | 5.0 | 280 | 0.6623 | 0.88 |
No log | 6.0 | 336 | 0.6685 | 0.8933 |
No log | 7.0 | 392 | 0.6864 | 0.9067 |
No log | 8.0 | 448 | 0.7105 | 0.8978 |
0.0902 | 9.0 | 504 | 0.7304 | 0.8978 |
0.0902 | 10.0 | 560 | 0.7451 | 0.8978 |
0.0902 | 11.0 | 616 | 0.7603 | 0.8978 |
0.0902 | 12.0 | 672 | 0.7714 | 0.8978 |
0.0902 | 13.0 | 728 | 0.7845 | 0.8978 |
0.0902 | 14.0 | 784 | 0.7961 | 0.8978 |
0.0902 | 15.0 | 840 | 0.8059 | 0.8978 |
0.0902 | 16.0 | 896 | 0.8171 | 0.8978 |
0.0902 | 17.0 | 952 | 0.8258 | 0.8978 |
0.0001 | 18.0 | 1008 | 0.8337 | 0.8978 |
0.0001 | 19.0 | 1064 | 0.8420 | 0.8978 |
0.0001 | 20.0 | 1120 | 0.8510 | 0.8978 |
0.0001 | 21.0 | 1176 | 0.8590 | 0.8978 |
0.0001 | 22.0 | 1232 | 0.8681 | 0.8978 |
0.0001 | 23.0 | 1288 | 0.8738 | 0.8978 |
0.0001 | 24.0 | 1344 | 0.8802 | 0.8978 |
0.0001 | 25.0 | 1400 | 0.8858 | 0.8933 |
0.0001 | 26.0 | 1456 | 0.8928 | 0.8933 |
0.0 | 27.0 | 1512 | 0.9000 | 0.8933 |
0.0 | 28.0 | 1568 | 0.9057 | 0.8933 |
0.0 | 29.0 | 1624 | 0.9097 | 0.8933 |
0.0 | 30.0 | 1680 | 0.9170 | 0.8933 |
0.0 | 31.0 | 1736 | 0.9224 | 0.8933 |
0.0 | 32.0 | 1792 | 0.9259 | 0.8933 |
0.0 | 33.0 | 1848 | 0.9303 | 0.8933 |
0.0 | 34.0 | 1904 | 0.9361 | 0.8933 |
0.0 | 35.0 | 1960 | 0.9418 | 0.8933 |
0.0 | 36.0 | 2016 | 0.9477 | 0.8933 |
0.0 | 37.0 | 2072 | 0.9521 | 0.8933 |
0.0 | 38.0 | 2128 | 0.9558 | 0.8933 |
0.0 | 39.0 | 2184 | 0.9597 | 0.8933 |
0.0 | 40.0 | 2240 | 0.9645 | 0.8933 |
0.0 | 41.0 | 2296 | 0.9681 | 0.8933 |
0.0 | 42.0 | 2352 | 0.9722 | 0.8933 |
0.0 | 43.0 | 2408 | 0.9759 | 0.8933 |
0.0 | 44.0 | 2464 | 0.9797 | 0.8933 |
0.0 | 45.0 | 2520 | 0.9836 | 0.8933 |
0.0 | 46.0 | 2576 | 0.9874 | 0.8933 |
0.0 | 47.0 | 2632 | 0.9919 | 0.8933 |
0.0 | 48.0 | 2688 | 0.9952 | 0.8933 |
0.0 | 49.0 | 2744 | 0.9993 | 0.8933 |
0.0 | 50.0 | 2800 | 1.0033 | 0.8933 |
0.0 | 51.0 | 2856 | 1.0066 | 0.8933 |
0.0 | 52.0 | 2912 | 1.0109 | 0.8933 |
0.0 | 53.0 | 2968 | 1.0144 | 0.8933 |
0.0 | 54.0 | 3024 | 1.0177 | 0.8933 |
0.0 | 55.0 | 3080 | 1.0210 | 0.8933 |
0.0 | 56.0 | 3136 | 1.0242 | 0.8933 |
0.0 | 57.0 | 3192 | 1.0272 | 0.8933 |
0.0 | 58.0 | 3248 | 1.0315 | 0.8933 |
0.0 | 59.0 | 3304 | 1.0340 | 0.8933 |
0.0 | 60.0 | 3360 | 1.0364 | 0.8933 |
0.0 | 61.0 | 3416 | 1.0392 | 0.8933 |
0.0 | 62.0 | 3472 | 1.0423 | 0.8933 |
0.0 | 63.0 | 3528 | 1.0452 | 0.8933 |
0.0 | 64.0 | 3584 | 1.0475 | 0.8933 |
0.0 | 65.0 | 3640 | 1.0504 | 0.8933 |
0.0 | 66.0 | 3696 | 1.0529 | 0.8933 |
0.0 | 67.0 | 3752 | 1.0543 | 0.8933 |
0.0 | 68.0 | 3808 | 1.0578 | 0.8933 |
0.0 | 69.0 | 3864 | 1.0606 | 0.8933 |
0.0 | 70.0 | 3920 | 1.0629 | 0.8933 |
0.0 | 71.0 | 3976 | 1.0650 | 0.8933 |
0.0 | 72.0 | 4032 | 1.0666 | 0.8933 |
0.0 | 73.0 | 4088 | 1.0690 | 0.8933 |
0.0 | 74.0 | 4144 | 1.0712 | 0.8933 |
0.0 | 75.0 | 4200 | 1.0731 | 0.8933 |
0.0 | 76.0 | 4256 | 1.0751 | 0.8933 |
0.0 | 77.0 | 4312 | 1.0766 | 0.8933 |
0.0 | 78.0 | 4368 | 1.0784 | 0.8933 |
0.0 | 79.0 | 4424 | 1.0805 | 0.8933 |
0.0 | 80.0 | 4480 | 1.0822 | 0.8933 |
0.0 | 81.0 | 4536 | 1.0836 | 0.8933 |
0.0 | 82.0 | 4592 | 1.0860 | 0.8933 |
0.0 | 83.0 | 4648 | 1.0873 | 0.8933 |
0.0 | 84.0 | 4704 | 1.0888 | 0.8933 |
0.0 | 85.0 | 4760 | 1.0902 | 0.8933 |
0.0 | 86.0 | 4816 | 1.0916 | 0.8933 |
0.0 | 87.0 | 4872 | 1.0927 | 0.8933 |
0.0 | 88.0 | 4928 | 1.0937 | 0.8933 |
0.0 | 89.0 | 4984 | 1.0948 | 0.8933 |
0.0 | 90.0 | 5040 | 1.0959 | 0.8933 |
0.0 | 91.0 | 5096 | 1.0965 | 0.8933 |
0.0 | 92.0 | 5152 | 1.0972 | 0.8933 |
0.0 | 93.0 | 5208 | 1.0982 | 0.8933 |
0.0 | 94.0 | 5264 | 1.0988 | 0.8933 |
0.0 | 95.0 | 5320 | 1.0993 | 0.8933 |
0.0 | 96.0 | 5376 | 1.0998 | 0.8933 |
0.0 | 97.0 | 5432 | 1.1000 | 0.8933 |
0.0 | 98.0 | 5488 | 1.1001 | 0.8933 |
0.0 | 99.0 | 5544 | 1.1003 | 0.8933 |
0.0 | 100.0 | 5600 | 1.1004 | 0.8933 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.2.1
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for AmedeoBonatti/nlp_te_class_scibert_tok
Base model
allenai/scibert_scivocab_uncased
Finetuned
AmedeoBonatti/nlp_te_mlm_scibert_tok