nb-bert-edu-scorer-swe
This model is a fine-tuned version of NbAiLab/nb-bert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9269
- Precision: 0.3790
- Recall: 0.3418
- F1 Macro: 0.3416
- Accuracy: 0.4269
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 512
- eval_batch_size: 256
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 Macro | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0 | 0 | 5.1598 | 0.0513 | 0.1667 | 0.0785 | 0.3080 |
1.0761 | 5.4348 | 1000 | 1.0157 | 0.3984 | 0.3359 | 0.3328 | 0.4098 |
1.0442 | 10.8696 | 2000 | 1.0227 | 0.4107 | 0.3519 | 0.3521 | 0.4076 |
1.0356 | 16.3043 | 3000 | 1.0053 | 0.4106 | 0.3551 | 0.3552 | 0.4171 |
Framework versions
- Transformers 4.55.0
- Pytorch 2.5.1+cu121
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 12
Model tree for AngelinaZanardi/nb-bert-edu-scorer-swe
Base model
NbAiLab/nb-bert-base