File size: 4,053 Bytes
48ebc18
 
277166b
 
 
 
 
 
48ebc18
 
277166b
 
 
48ebc18
277166b
 
 
 
 
48ebc18
 
5926101
6106dd7
5461444
6106dd7
911cb12
e223ff2
 
 
5926101
e223ff2
 
 
 
5926101
e1bb829
5926101
6106dd7
5926101
 
 
 
0b4735c
5926101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1bb829
5461444
6106dd7
5926101
 
 
 
 
 
 
 
 
 
e1bb829
5926101
6106dd7
 
5926101
 
 
5461444
6106dd7
5926101
 
 
 
e1bb829
5926101
6106dd7
5926101
6106dd7
e1bb829
5926101
 
6106dd7
5926101
 
e1bb829
5926101
 
e1bb829
5926101
6106dd7
e1bb829
6106dd7
5926101
 
6106dd7
5926101
e1bb829
5926101
 
 
e1bb829
5926101
6106dd7
5926101
5461444
5926101
 
277166b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
tags:
- customer-support
- LLaMA
- fine-tuned
- AI
- chatbot
- ai-agent
license: apache-2.0
library_name: transformers
model_creator: Ansah AI
model_type: causal-lm
finetuned_from: meta-llama/Llama-1-1B
datasets:
- custom-dataset
language:
- en
base_model:
- meta-llama/Llama-3.2-1B-Instruct
---

```markdown
 Ansah E1: Fine-Tuned Customer Support Model

 Model Overview
Ansah E1 is a fine-tuned version of Meta’s LLaMA 1B-intruct,
 built for automating customer support across industries.
It provides fast, accurate, and context-aware responses, 
making it ideal for businesses seeking AI-driven support solutions.  

While it is highly optimized for e-commerce,
 it can also be used for SaaS, IT support, and enterprise service automation.
Unlike traditional cloud-based models, Ansah E1 runs locally, 
ensuring data privacy, lower operational costs, and reduced latency.  



 Key Features
- Accurate and context-aware responses  
  - Understands structured and unstructured customer queries  
  - Maintains conversation memory for multi-turn interactions  

- Automated ticket escalation when used with langchain  or other frameworks
  - Detects critical cases and escalates them intelligently  
  - Reduces workload by handling repetitive issues autonomously  

- Local deployment and data privacy  
  - Runs entirely on-premises for full data control  
  - Eliminates external cloud dependencies, ensuring security  

- Optimized for efficient performance  
  - Works smoothly on consumer-grade GPUs and high-performance CPUs  
  - Available in 4-bit GGUF format for lightweight, optimized deployment  

- Seamless API and tool integration  
  - Can integrate with e-commerce platforms, SaaS tools, and IT support systems  
  - Supports tool-calling functions to automate business workflows  



 Model Details
- Base Model: Meta LLaMA 1B  
- Fine-Tuned Data: Customer support logs, e-commerce transactions, and business service inquiries  
- Primary Use Cases:  
  - E-Commerce: Order tracking, refunds, cancellations, and payment assistance  
  - IT and SaaS Support: AI-powered help desks and troubleshooting  
  - Enterprise Automation: On-prem AI assistants for business operations  
- Hardware Compatibility:  
  - Optimized for local GPU and CPU deployment  
  - Available in GGUF format for lightweight, high-speed inference  



 Available Model Formats  
 Full Precision Model (Hugging Face Transformers)
Repository: [Ansah E1](https://huggingface.co/Ansah-AI/E1)  
- Best suited for high-accuracy, real-time inference  
- Runs efficiently with 4-bit or 8-bit quantization for optimal performance  

 4-Bit GGUF Model for Lightweight Deployment
Repository: [Ansah E1 - 4bit GGUF](https://huggingface.co/dheerajdasari/E1-Q4_K_M-GGUF)  
- Designed for low-resource environments  
- Ideal for Llama.cpp, KoboldAI, and local AI inference engines  



 How to Use  

 Using the Full Precision Model
python
from transformers import AutoTokenizer, AutoModelForCausalLM

 Load the fine-tuned model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Ansah-AI/E1")
model = AutoModelForCausalLM.from_pretrained("Ansah-AI/E1")

- For optimized inference, use 4-bit or 8-bit quantization via bitsandbytes  



 Using the GGUF 4-Bit Model (For Llama.cpp and Local Inference)
bash
 Download the GGUF model
wget https://huggingface.co/dheerajdasari/E1-Q4_K_M-GGUF/resolve/main/E1-Q4_K_M.gguf

 Run using Llama.cpp
./main -m E1-Q4_K_M.gguf -p "Hello, how can I assist you?"

- Works with Llama.cpp, KoboldAI, and other local inference frameworks  
- Perfect for low-power devices or edge deployment  



 Conclusion  
Ansah E1 is a scalable, private, and efficient AI model designed to automate customer support across multiple industries. It eliminates cloud dependencies, ensuring cost-effective and secure deployment while providing fast, intelligent, and reliable support automation.  

Try it now:  
[Ansah E1 (Full Model)](https://huggingface.co/Ansah-AI/E1)  
[Ansah E1 - 4bit GGUF](https://huggingface.co/dheerajdasari/E1-Q4_K_M-GGUF)