robertuito-esp
This model is a fine-tuned version of pysentimiento/robertuito-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- F1: 0.8528
- Loss: 0.5317
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.728093668459819e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | F1 | Validation Loss |
---|---|---|---|---|
0.6839 | 0.0313 | 50 | 0.7302 | 0.5988 |
0.5925 | 0.0626 | 100 | 0.7898 | 0.4998 |
0.5793 | 0.0939 | 150 | 0.8199 | 0.4645 |
0.4964 | 0.1252 | 200 | 0.7882 | 0.5048 |
0.4979 | 0.1565 | 250 | 0.8483 | 0.4355 |
0.5462 | 0.1879 | 300 | 0.8589 | 0.4264 |
0.4271 | 0.2192 | 350 | 0.8325 | 0.4819 |
0.4801 | 0.2505 | 400 | 0.8688 | 0.4230 |
0.4246 | 0.2818 | 450 | 0.8731 | 0.4355 |
0.4435 | 0.3131 | 500 | 0.8730 | 0.4197 |
0.3257 | 0.3444 | 550 | 0.8710 | 0.4488 |
0.4379 | 0.3757 | 600 | 0.8652 | 0.4428 |
0.4813 | 0.4070 | 650 | 0.8647 | 0.4094 |
0.49 | 0.4383 | 700 | 0.8263 | 0.4768 |
0.3999 | 0.4696 | 750 | 0.8467 | 0.4463 |
0.3629 | 0.5009 | 800 | 0.8523 | 0.4403 |
0.403 | 0.5322 | 850 | 0.8670 | 0.4416 |
0.3329 | 0.5636 | 900 | 0.8547 | 0.4821 |
0.4652 | 0.5949 | 950 | 0.8509 | 0.4877 |
0.4348 | 0.6262 | 1000 | 0.8565 | 0.4801 |
0.3317 | 0.6575 | 1050 | 0.8423 | 0.4966 |
0.46 | 0.6888 | 1100 | 0.8327 | 0.5275 |
0.3597 | 0.7201 | 1150 | 0.8508 | 0.5103 |
0.358 | 0.7514 | 1200 | 0.8522 | 0.4784 |
0.3856 | 0.7827 | 1250 | 0.8693 | 0.4824 |
0.3635 | 0.8140 | 1300 | 0.8729 | 0.4662 |
0.4228 | 0.8453 | 1350 | 0.8612 | 0.4617 |
0.3565 | 0.8766 | 1400 | 0.8628 | 0.4627 |
0.3035 | 0.9080 | 1450 | 0.8672 | 0.4734 |
0.407 | 0.9393 | 1500 | 0.8641 | 0.4566 |
0.3273 | 0.9706 | 1550 | 0.8531 | 0.4912 |
0.2871 | 1.0019 | 1600 | 0.8673 | 0.4843 |
0.2829 | 1.0332 | 1650 | 0.8591 | 0.4843 |
0.2512 | 1.0645 | 1700 | 0.8588 | 0.5057 |
0.2945 | 1.0958 | 1750 | 0.8448 | 0.5404 |
0.3107 | 1.1271 | 1800 | 0.8647 | 0.4773 |
0.2441 | 1.1584 | 1850 | 0.8530 | 0.5198 |
0.2744 | 1.1897 | 1900 | 0.8669 | 0.5051 |
0.2469 | 1.2210 | 1950 | 0.8569 | 0.5106 |
0.2532 | 1.2523 | 2000 | 0.8692 | 0.5018 |
0.2995 | 1.2837 | 2050 | 0.8651 | 0.5020 |
0.2461 | 1.3150 | 2100 | 0.8571 | 0.5256 |
0.2463 | 1.3463 | 2150 | 0.8653 | 0.5064 |
0.257 | 1.3776 | 2200 | 0.8669 | 0.4898 |
0.2294 | 1.4089 | 2250 | 0.8673 | 0.4992 |
0.2621 | 1.4402 | 2300 | 0.8652 | 0.5104 |
0.2373 | 1.4715 | 2350 | 0.8487 | 0.5130 |
0.2367 | 1.5028 | 2400 | 0.8448 | 0.5559 |
0.2464 | 1.5341 | 2450 | 0.8653 | 0.5204 |
0.2348 | 1.5654 | 2500 | 0.8693 | 0.5159 |
0.2069 | 1.5967 | 2550 | 0.8588 | 0.5004 |
0.2213 | 1.6281 | 2600 | 0.8592 | 0.5359 |
0.2264 | 1.6594 | 2650 | 0.8652 | 0.5244 |
0.2296 | 1.6907 | 2700 | 0.8611 | 0.5211 |
0.2366 | 1.7220 | 2750 | 0.8592 | 0.5117 |
0.2392 | 1.7533 | 2800 | 0.8706 | 0.4882 |
0.2636 | 1.7846 | 2850 | 0.8713 | 0.4988 |
0.2426 | 1.8159 | 2900 | 0.8732 | 0.4955 |
0.2541 | 1.8472 | 2950 | 0.8690 | 0.4957 |
0.2625 | 1.8785 | 3000 | 0.8752 | 0.4843 |
0.2151 | 1.9098 | 3050 | 0.8710 | 0.5104 |
0.2214 | 1.9411 | 3100 | 0.8710 | 0.5103 |
0.2708 | 1.9724 | 3150 | 0.8639 | 0.4959 |
0.2593 | 2.0038 | 3200 | 0.8652 | 0.5207 |
0.2233 | 2.0351 | 3250 | 0.8611 | 0.5260 |
0.2223 | 2.0664 | 3300 | 0.8671 | 0.5186 |
0.2262 | 2.0977 | 3350 | 0.8705 | 0.4925 |
0.2297 | 2.1290 | 3400 | 0.8610 | 0.5214 |
0.2042 | 2.1603 | 3450 | 0.8590 | 0.5329 |
0.2238 | 2.1916 | 3500 | 0.8489 | 0.5318 |
0.2109 | 2.2229 | 3550 | 0.8570 | 0.5286 |
0.226 | 2.2542 | 3600 | 0.8630 | 0.5232 |
0.2594 | 2.2855 | 3650 | 0.8651 | 0.5132 |
0.2264 | 2.3168 | 3700 | 0.8570 | 0.5239 |
0.2025 | 2.3482 | 3750 | 0.8590 | 0.5274 |
0.2064 | 2.3795 | 3800 | 0.8609 | 0.5045 |
0.2004 | 2.4108 | 3850 | 0.8650 | 0.5114 |
0.2278 | 2.4421 | 3900 | 0.8489 | 0.5277 |
0.2193 | 2.4734 | 3950 | 0.8610 | 0.5227 |
0.2231 | 2.5047 | 4000 | 0.8609 | 0.5109 |
0.207 | 2.5360 | 4050 | 0.8566 | 0.5087 |
0.1995 | 2.5673 | 4100 | 0.8630 | 0.5221 |
0.2125 | 2.5986 | 4150 | 0.8610 | 0.5242 |
0.2014 | 2.6299 | 4200 | 0.8550 | 0.5371 |
0.2118 | 2.6612 | 4250 | 0.8591 | 0.5321 |
0.1995 | 2.6925 | 4300 | 0.8550 | 0.5375 |
0.2258 | 2.7239 | 4350 | 0.8550 | 0.5352 |
0.1994 | 2.7552 | 4400 | 0.8570 | 0.5390 |
0.2235 | 2.7865 | 4450 | 0.8570 | 0.5306 |
0.2109 | 2.8178 | 4500 | 0.8530 | 0.5452 |
0.2091 | 2.8491 | 4550 | 0.8550 | 0.5345 |
0.1994 | 2.8804 | 4600 | 0.8550 | 0.5356 |
0.2134 | 2.9117 | 4650 | 0.8529 | 0.5368 |
0.2111 | 2.9430 | 4700 | 0.8508 | 0.5317 |
0.1995 | 2.9743 | 4750 | 0.8528 | 0.5317 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Anwaarma/robertuito-esp
Base model
pysentimiento/robertuito-base-uncased