robertuito-esp

This model is a fine-tuned version of pysentimiento/robertuito-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • F1: 0.8528
  • Loss: 0.5317

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.728093668459819e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step F1 Validation Loss
0.6839 0.0313 50 0.7302 0.5988
0.5925 0.0626 100 0.7898 0.4998
0.5793 0.0939 150 0.8199 0.4645
0.4964 0.1252 200 0.7882 0.5048
0.4979 0.1565 250 0.8483 0.4355
0.5462 0.1879 300 0.8589 0.4264
0.4271 0.2192 350 0.8325 0.4819
0.4801 0.2505 400 0.8688 0.4230
0.4246 0.2818 450 0.8731 0.4355
0.4435 0.3131 500 0.8730 0.4197
0.3257 0.3444 550 0.8710 0.4488
0.4379 0.3757 600 0.8652 0.4428
0.4813 0.4070 650 0.8647 0.4094
0.49 0.4383 700 0.8263 0.4768
0.3999 0.4696 750 0.8467 0.4463
0.3629 0.5009 800 0.8523 0.4403
0.403 0.5322 850 0.8670 0.4416
0.3329 0.5636 900 0.8547 0.4821
0.4652 0.5949 950 0.8509 0.4877
0.4348 0.6262 1000 0.8565 0.4801
0.3317 0.6575 1050 0.8423 0.4966
0.46 0.6888 1100 0.8327 0.5275
0.3597 0.7201 1150 0.8508 0.5103
0.358 0.7514 1200 0.8522 0.4784
0.3856 0.7827 1250 0.8693 0.4824
0.3635 0.8140 1300 0.8729 0.4662
0.4228 0.8453 1350 0.8612 0.4617
0.3565 0.8766 1400 0.8628 0.4627
0.3035 0.9080 1450 0.8672 0.4734
0.407 0.9393 1500 0.8641 0.4566
0.3273 0.9706 1550 0.8531 0.4912
0.2871 1.0019 1600 0.8673 0.4843
0.2829 1.0332 1650 0.8591 0.4843
0.2512 1.0645 1700 0.8588 0.5057
0.2945 1.0958 1750 0.8448 0.5404
0.3107 1.1271 1800 0.8647 0.4773
0.2441 1.1584 1850 0.8530 0.5198
0.2744 1.1897 1900 0.8669 0.5051
0.2469 1.2210 1950 0.8569 0.5106
0.2532 1.2523 2000 0.8692 0.5018
0.2995 1.2837 2050 0.8651 0.5020
0.2461 1.3150 2100 0.8571 0.5256
0.2463 1.3463 2150 0.8653 0.5064
0.257 1.3776 2200 0.8669 0.4898
0.2294 1.4089 2250 0.8673 0.4992
0.2621 1.4402 2300 0.8652 0.5104
0.2373 1.4715 2350 0.8487 0.5130
0.2367 1.5028 2400 0.8448 0.5559
0.2464 1.5341 2450 0.8653 0.5204
0.2348 1.5654 2500 0.8693 0.5159
0.2069 1.5967 2550 0.8588 0.5004
0.2213 1.6281 2600 0.8592 0.5359
0.2264 1.6594 2650 0.8652 0.5244
0.2296 1.6907 2700 0.8611 0.5211
0.2366 1.7220 2750 0.8592 0.5117
0.2392 1.7533 2800 0.8706 0.4882
0.2636 1.7846 2850 0.8713 0.4988
0.2426 1.8159 2900 0.8732 0.4955
0.2541 1.8472 2950 0.8690 0.4957
0.2625 1.8785 3000 0.8752 0.4843
0.2151 1.9098 3050 0.8710 0.5104
0.2214 1.9411 3100 0.8710 0.5103
0.2708 1.9724 3150 0.8639 0.4959
0.2593 2.0038 3200 0.8652 0.5207
0.2233 2.0351 3250 0.8611 0.5260
0.2223 2.0664 3300 0.8671 0.5186
0.2262 2.0977 3350 0.8705 0.4925
0.2297 2.1290 3400 0.8610 0.5214
0.2042 2.1603 3450 0.8590 0.5329
0.2238 2.1916 3500 0.8489 0.5318
0.2109 2.2229 3550 0.8570 0.5286
0.226 2.2542 3600 0.8630 0.5232
0.2594 2.2855 3650 0.8651 0.5132
0.2264 2.3168 3700 0.8570 0.5239
0.2025 2.3482 3750 0.8590 0.5274
0.2064 2.3795 3800 0.8609 0.5045
0.2004 2.4108 3850 0.8650 0.5114
0.2278 2.4421 3900 0.8489 0.5277
0.2193 2.4734 3950 0.8610 0.5227
0.2231 2.5047 4000 0.8609 0.5109
0.207 2.5360 4050 0.8566 0.5087
0.1995 2.5673 4100 0.8630 0.5221
0.2125 2.5986 4150 0.8610 0.5242
0.2014 2.6299 4200 0.8550 0.5371
0.2118 2.6612 4250 0.8591 0.5321
0.1995 2.6925 4300 0.8550 0.5375
0.2258 2.7239 4350 0.8550 0.5352
0.1994 2.7552 4400 0.8570 0.5390
0.2235 2.7865 4450 0.8570 0.5306
0.2109 2.8178 4500 0.8530 0.5452
0.2091 2.8491 4550 0.8550 0.5345
0.1994 2.8804 4600 0.8550 0.5356
0.2134 2.9117 4650 0.8529 0.5368
0.2111 2.9430 4700 0.8508 0.5317
0.1995 2.9743 4750 0.8528 0.5317

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu126
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Anwaarma/robertuito-esp

Finetuned
(9)
this model