Tajik FastText Word Embedding Model

This repository contains a pretrained FastText model for the Tajik language, trained on a large corpus of Tajik texts. The model supports subword information, allowing it to generate embeddings even for rare or unseen (OOV) words.

The model is suitable for use in various NLP tasks such as:

  • Semantic analysis
  • Text classification
  • Machine translation
  • Synonym detection and thesaurus building
  • Enhancing other models through embedding initialization

Licensed under the MIT License, which allows free usage in both research and commercial applications.


📊 Model Overview

Parameter Value
Model Type FastText (with subwords)
Vector Size 300
Vocabulary Size 145,232
OOV Support Yes
Context Window 5
Min Word Count ≥ 5

📚 Training Corpus

Books (Total: 99)

  • Programming: 6
  • History: 4
  • Religion: 12
  • Scientific: 3
  • Children's literature: 6
  • Prose: 19
  • Poetry: 21
  • Textbooks: 28

Articles (Total: 134,497)

  • Asia-Plus: 20,471
  • Khovar: 21,557
  • Ovozi Tojik: 7,495
  • Farazh: 4,679
  • Wikipedia: 80,295

Total Corpus Statistics

  • Documents: 134,596
  • Tokens: 33,535,383
  • Unique Lemmas: 649,308

🧪 Model Comparison with Meta FastText

We evaluated our model against Meta’s pretrained FastText using semantic similarity and Spearman correlation:

Model Spearman Correlation OOV Support
FastText (Meta) 0.703 Yes
FastText (ours) 0.622 Yes

While Meta FastText achieves better overall performance, our model demonstrates strong results on Tajik-specific morphology and semantics.


🔍 Example Similar Words

Word Nearest Neighbors (FastText)
кӯдак кӯдаку(0.82), хурдкӯдак(0.81), кӯдакам(0.81), кӯдакат(0.81), кӯдаке(0.81)
муаллим муаллиме(0.90), муаллимат(0.89), муаллимин(0.89), муаллиму(0.88), муаллима(0.88)
об оби(0.79), обро(0.74), обмӯрии(0.70), обшустаи(0.68), обшуста(0.66)
мард марда(0.87), мардхӯ(0.85), мардвор(0.85), мардро(0.83), зан(0.82)
деҳа деҳайи(0.83), деҳаю(0.80), деҳавз(0.78), деҳакӣ(0.76), деҳодеҳ(0.74)
китоб китобӣ(0.84), китобгуна(0.83), китобча(0.81), китобсӯзӣ(0.81), китобро(0.81)
меҳмон меҳмонӣ(0.86), меҳмоншо(0.85), меҳмонат(0.83), меҳмонҳона(0.82), меҳмони(0.82)
шаҳр шаҳрӯ(0.82), шаҳрча(0.80), бушаҳр(0.79), шаҳрат(0.79), навшаҳр(0.79)
падар падаршӯ(0.89), падарӣ(0.84), падаршӯву(0.84), падаре(0.84), падаршон(0.83)
модар модаршӯ(0.86), модаршӯяш(0.83), модару(0.81), модаре(0.81), модарвор(0.80)

🧩 Handling OOV (Out-of-Vocabulary) Words

FastText supports generating vectors for unknown words via subword units (n-grams). Here are some examples:

Unknown Word Closest Matches (FastText)
кӯдакона кӯдаконаи(0.82), кӯдаконат(0.81), кӯдаконае(0.81)
меҳмонамон меҳмон(0.77), меҳмонҳо(0.77), меҳмонам(0.76)
муаллимон муаллимони(0.89), муаллимоне(0.88), муаллимону(0.83)
деҳоти дарҷамоати(0.79), чамоати(0.74), ҷамоати(0.81)
саводнок саводнокӣ(0.88), саводнокиву(0.85), саводнокии(0.84)

📌 Features for Tajik Language

Our model performs well on:

  • Semantic similarity: e.g., "мард" ↔ "зан", "китоб" ↔ "китобгуна"
  • Morphological variants: e.g., "кӯдак" → "кӯдаку", "кӯдаки"
  • Rare/compound words: thanks to subword representations like "саводнок", "деҳоти"

💡 Usage Example

from gensim.models import FastText

model = FastText.load("tajik_fasttext.model")
vector = model.wv["падар"]  # Get vector for a word
similar_words = model.wv.most_similar("модар")  # Find similar words

🗂️ Files Included

File Description
tajik_fasttext.model Gensim FastText model file
*.npy files Supporting NumPy arrays for vectors

📚 Citation

If you use this model, please cite:

@misc{ArabovMK_Tajik_FastText,
  author = {ArabovMK},
  title = {Tajik FastText Word Embeddings},
  year = 2025,
  publisher = {Hugging Face},
  url = {https://huggingface.co/ArabovMK/tajik-fasttext-model}
}

Last updated: 2025-05-10

Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support