|
--- |
|
license: apache-2.0 |
|
base_model: allenai/longformer-base-4096 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: frame_classification_longformer_earlystopping_2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# frame_classification_longformer_earlystopping_2 |
|
|
|
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5698 |
|
- Accuracy: 0.9317 |
|
- F1: 0.9601 |
|
- Precision: 0.9346 |
|
- Recall: 0.9869 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 30 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.8651 | 1.0 | 1288 | 1.1520 | 0.8323 | 0.9085 | 0.8323 | 1.0 | |
|
| 0.7998 | 2.0 | 2576 | 0.6925 | 0.9130 | 0.9495 | 0.9181 | 0.9832 | |
|
| 0.6819 | 3.0 | 3864 | 0.4349 | 0.9255 | 0.9560 | 0.9404 | 0.9720 | |
|
| 0.7033 | 4.0 | 5152 | 0.5836 | 0.9224 | 0.9547 | 0.9278 | 0.9832 | |
|
| 0.757 | 5.0 | 6440 | 0.5795 | 0.9224 | 0.9544 | 0.9339 | 0.9757 | |
|
| 0.6963 | 6.0 | 7728 | 0.5488 | 0.9317 | 0.9599 | 0.9393 | 0.9813 | |
|
| 0.6656 | 7.0 | 9016 | 0.6232 | 0.9255 | 0.9564 | 0.9311 | 0.9832 | |
|
| 0.6957 | 8.0 | 10304 | 0.6441 | 0.9255 | 0.9564 | 0.9311 | 0.9832 | |
|
| 0.6852 | 9.0 | 11592 | 0.6009 | 0.9224 | 0.9548 | 0.9263 | 0.9851 | |
|
| 0.6846 | 10.0 | 12880 | 0.5947 | 0.9255 | 0.9564 | 0.9311 | 0.9832 | |
|
| 0.728 | 11.0 | 14168 | 0.5873 | 0.9224 | 0.9550 | 0.9219 | 0.9907 | |
|
| 0.6456 | 12.0 | 15456 | 0.5781 | 0.9332 | 0.9609 | 0.9363 | 0.9869 | |
|
| 0.662 | 13.0 | 16744 | 0.5128 | 0.9301 | 0.9588 | 0.9408 | 0.9776 | |
|
| 0.6017 | 14.0 | 18032 | 0.6430 | 0.9177 | 0.9514 | 0.9351 | 0.9683 | |
|
| 0.7525 | 15.0 | 19320 | 0.5631 | 0.9193 | 0.9522 | 0.9384 | 0.9664 | |
|
| 0.6802 | 16.0 | 20608 | 0.5949 | 0.9224 | 0.9544 | 0.9339 | 0.9757 | |
|
| 0.6489 | 17.0 | 21896 | 0.6540 | 0.9022 | 0.9416 | 0.9355 | 0.9478 | |
|
| 0.707 | 18.0 | 23184 | 0.5921 | 0.9239 | 0.9554 | 0.9325 | 0.9795 | |
|
| 0.7158 | 19.0 | 24472 | 0.6170 | 0.9255 | 0.9564 | 0.9311 | 0.9832 | |
|
| 0.6264 | 20.0 | 25760 | 0.5303 | 0.9348 | 0.9617 | 0.9395 | 0.9851 | |
|
| 0.6667 | 21.0 | 27048 | 0.6288 | 0.9255 | 0.9566 | 0.9281 | 0.9869 | |
|
| 0.6648 | 22.0 | 28336 | 0.6579 | 0.9208 | 0.9540 | 0.9232 | 0.9869 | |
|
| 0.6204 | 23.0 | 29624 | 0.5716 | 0.9301 | 0.9592 | 0.9330 | 0.9869 | |
|
| 0.6693 | 24.0 | 30912 | 0.6138 | 0.9270 | 0.9575 | 0.9282 | 0.9888 | |
|
| 0.6555 | 25.0 | 32200 | 0.6369 | 0.9255 | 0.9566 | 0.9281 | 0.9869 | |
|
| 0.6446 | 26.0 | 33488 | 0.5609 | 0.9301 | 0.9591 | 0.9345 | 0.9851 | |
|
| 0.6675 | 27.0 | 34776 | 0.5622 | 0.9301 | 0.9591 | 0.9361 | 0.9832 | |
|
| 0.5946 | 28.0 | 36064 | 0.5740 | 0.9301 | 0.9591 | 0.9345 | 0.9851 | |
|
| 0.5707 | 29.0 | 37352 | 0.5661 | 0.9317 | 0.9601 | 0.9346 | 0.9869 | |
|
| 0.6703 | 30.0 | 38640 | 0.5698 | 0.9317 | 0.9601 | 0.9346 | 0.9869 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|