ht-stmini-cls-v6_ftis_noPretrain-smlo-bml

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1492
  • Accuracy: 0.8919
  • Macro F1: 0.7363

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 6733
  • training_steps: 134674

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
35.4515 0.0013 174 21.9070 0.0690 0.0299
16.8987 1.0013 348 9.9771 0.3375 0.0794
7.651 2.0013 522 6.7869 0.4999 0.1251
6.1382 3.0013 696 5.6561 0.5481 0.1349
5.1599 4.0013 870 4.9033 0.5618 0.1382
4.5752 5.0013 1044 4.2459 0.5792 0.1428
3.7321 6.0012 1218 3.4640 0.5679 0.1419
3.2741 7.0012 1392 3.2347 0.5943 0.1502
2.8305 8.0012 1566 2.9392 0.6110 0.1533
2.6049 9.0012 1740 2.6772 0.6255 0.1637
2.487 10.0012 1914 2.5802 0.6207 0.1634
2.32 11.0012 2088 2.4366 0.6287 0.1810
2.2465 12.0012 2262 2.4188 0.6218 0.1825
2.2835 13.0012 2436 2.3836 0.6427 0.1947
2.1001 14.0012 2610 2.2597 0.6568 0.2169
2.063 15.0012 2784 2.2488 0.6593 0.2216
1.9306 16.0012 2958 2.1703 0.6634 0.2415
1.8336 17.0012 3132 2.2613 0.6549 0.2434
1.8524 18.0012 3306 2.0121 0.6844 0.2899
1.8061 19.0012 3480 2.0636 0.6829 0.2673
1.683 20.0011 3654 1.9940 0.7029 0.2963
1.6015 21.0011 3828 1.9928 0.7082 0.3174
1.558 22.0011 4002 1.9387 0.7167 0.3336
1.5793 23.0011 4176 1.9036 0.7294 0.3545
1.4352 24.0011 4350 1.8033 0.7261 0.3568
1.4207 25.0011 4524 1.8566 0.7269 0.3552
1.2726 26.0011 4698 1.6691 0.7496 0.3957
1.2905 27.0011 4872 1.6683 0.7490 0.3987
1.1671 28.0011 5046 1.6512 0.7552 0.4098
1.2042 29.0011 5220 1.5627 0.7555 0.4283
1.1664 30.0011 5394 1.7746 0.7414 0.4084
1.1403 31.0011 5568 1.6726 0.7605 0.4230
1.0731 32.0011 5742 1.6963 0.7375 0.4301
1.0289 33.0010 5916 1.7578 0.7467 0.4306
0.967 34.0010 6090 1.6874 0.7475 0.4541
0.9965 35.0010 6264 1.6983 0.7525 0.4285
0.9682 36.0010 6438 1.5561 0.7678 0.4434
0.9182 37.0010 6612 1.5473 0.7617 0.4456
0.9415 38.0010 6786 1.5597 0.7697 0.4666
0.8798 39.0010 6960 1.5203 0.7824 0.4783
0.7888 40.0010 7134 1.4801 0.7731 0.4821
0.7844 41.0010 7308 1.4949 0.7833 0.4843
0.807 42.0010 7482 1.4205 0.7919 0.4976
0.7701 43.0010 7656 1.4601 0.7967 0.4940
0.6837 44.0010 7830 1.3816 0.7932 0.5038
0.7004 45.0010 8004 1.4924 0.7917 0.5024
0.6791 46.0010 8178 1.4133 0.7944 0.5093
0.6205 47.0009 8352 1.4418 0.8002 0.5106
0.6017 48.0009 8526 1.5872 0.7908 0.5066
0.5733 49.0009 8700 1.6913 0.7806 0.5124
0.553 50.0009 8874 1.4380 0.8078 0.5167
0.5911 51.0009 9048 1.4504 0.8050 0.5274
0.5374 52.0009 9222 1.4591 0.8098 0.5357
0.4927 53.0009 9396 1.5309 0.8057 0.5260
0.4839 54.0009 9570 1.3519 0.8119 0.5380
0.4482 55.0009 9744 1.3275 0.8187 0.5372
0.437 56.0009 9918 1.5105 0.8060 0.5351
0.4146 57.0009 10092 1.3840 0.8119 0.5448
0.435 58.0009 10266 1.4256 0.8163 0.5585
0.4028 59.0009 10440 1.5280 0.8154 0.5466
0.396 60.0008 10614 1.3369 0.8234 0.5608
0.347 61.0008 10788 1.3442 0.8288 0.5646
0.3664 62.0008 10962 1.4856 0.8198 0.5577
0.3537 63.0008 11136 1.3081 0.8298 0.5761
0.3253 64.0008 11310 1.3074 0.8333 0.5790
0.3318 65.0008 11484 1.3272 0.8311 0.5880
0.295 66.0008 11658 1.2614 0.8353 0.5856
0.3052 67.0008 11832 1.3376 0.8341 0.5865
0.3088 68.0008 12006 1.3082 0.8393 0.5880
0.2873 69.0008 12180 1.3254 0.8343 0.5973
0.2719 70.0008 12354 1.3320 0.8363 0.5987
0.2629 71.0008 12528 1.4144 0.8323 0.5860
0.2846 72.0008 12702 1.3451 0.8374 0.6041
0.2509 73.0007 12876 1.3525 0.8423 0.6013
0.2502 74.0007 13050 1.1525 0.8497 0.6330
0.239 75.0007 13224 1.2372 0.8465 0.6130
0.2332 76.0007 13398 1.2791 0.8502 0.6106
0.2288 77.0007 13572 1.2336 0.8543 0.6314
0.2123 78.0007 13746 1.3242 0.8526 0.6183
0.1992 79.0007 13920 1.3304 0.8521 0.6198
0.2154 80.0007 14094 1.3772 0.8480 0.6123
0.2118 81.0007 14268 1.2787 0.8544 0.6254
0.1925 82.0007 14442 1.3153 0.8584 0.6294
0.1979 83.0007 14616 1.3995 0.8488 0.6184
0.1852 84.0007 14790 1.2301 0.8528 0.6261
0.1828 85.0007 14964 1.3435 0.8570 0.6325
0.1857 86.0007 15138 1.2396 0.8535 0.6315
0.1774 87.0006 15312 1.2718 0.8553 0.6334
0.1597 88.0006 15486 1.1920 0.8660 0.6454
0.1642 89.0006 15660 1.3240 0.8553 0.6362
0.1639 90.0006 15834 1.1937 0.8607 0.6496
0.1616 91.0006 16008 1.2719 0.8584 0.6436
0.1624 92.0006 16182 1.2800 0.8610 0.6447
0.1545 93.0006 16356 1.2380 0.8618 0.6457
0.1609 94.0006 16530 1.2556 0.8646 0.6511
0.1504 95.0006 16704 1.2569 0.8577 0.6402
0.1429 96.0006 16878 1.2041 0.8683 0.6553
0.1509 97.0006 17052 1.2054 0.8659 0.6582
0.1412 98.0006 17226 1.3651 0.8623 0.6515
0.1337 99.0006 17400 1.1862 0.8639 0.6561
0.1405 100.0005 17574 1.4219 0.8595 0.6436
0.151 101.0005 17748 1.3142 0.8664 0.6533
0.1348 102.0005 17922 1.1308 0.8699 0.6644
0.1288 103.0005 18096 1.2989 0.8637 0.6593
0.1262 104.0005 18270 1.2686 0.8663 0.6631
0.1274 105.0005 18444 1.3115 0.8654 0.6581
0.1245 106.0005 18618 1.1777 0.8689 0.6671
0.1258 107.0005 18792 1.2439 0.8679 0.6642
0.1199 108.0005 18966 1.2911 0.8699 0.6654
0.1176 109.0005 19140 1.3485 0.8686 0.6661
0.1146 110.0005 19314 1.3156 0.8737 0.6803
0.121 111.0005 19488 1.2584 0.8708 0.6652
0.1095 112.0005 19662 1.2118 0.8753 0.6769
0.1077 113.0005 19836 1.1833 0.8737 0.6822
0.1061 114.0004 20010 1.1777 0.8723 0.6776
0.1139 115.0004 20184 1.2363 0.8717 0.6760
0.1045 116.0004 20358 1.2453 0.8728 0.6793
0.1056 117.0004 20532 1.3777 0.8662 0.6679
0.1107 118.0004 20706 1.4315 0.8743 0.6757
0.1044 119.0004 20880 1.1999 0.8747 0.6816
0.1058 120.0004 21054 1.2723 0.8757 0.6763
0.0916 121.0004 21228 1.1777 0.8798 0.6888
0.1 122.0004 21402 1.3443 0.8769 0.6831
0.0984 123.0004 21576 1.2729 0.8758 0.6804
0.0947 124.0004 21750 1.1473 0.8794 0.6984
0.0915 125.0004 21924 1.3647 0.8716 0.6784
0.0968 126.0004 22098 1.3699 0.8744 0.6781
0.096 127.0003 22272 1.3357 0.8726 0.6767
0.0931 128.0003 22446 1.3305 0.8777 0.6867
0.0917 129.0003 22620 1.3569 0.8750 0.6878
0.0912 130.0003 22794 1.4142 0.8766 0.6820
0.0887 131.0003 22968 1.4611 0.8720 0.6875
0.0878 132.0003 23142 1.3584 0.8784 0.6867
0.0937 133.0003 23316 1.4110 0.8759 0.6867
0.0844 134.0003 23490 1.4329 0.8727 0.6833
0.0821 135.0003 23664 1.3382 0.8779 0.6926
0.0876 136.0003 23838 1.3005 0.8809 0.6907
0.0886 137.0003 24012 1.2828 0.8776 0.6867
0.0864 138.0003 24186 1.3294 0.8808 0.6923
0.0823 139.0003 24360 1.3551 0.8765 0.6888
0.089 140.0003 24534 1.4637 0.8783 0.6892
0.0814 141.0002 24708 1.4108 0.8686 0.6872
0.0802 142.0002 24882 1.2838 0.8810 0.6954
0.0793 143.0002 25056 1.2916 0.8821 0.6988
0.0836 144.0002 25230 1.4550 0.8785 0.6948
0.0801 145.0002 25404 1.2169 0.8828 0.7010
0.0813 146.0002 25578 1.2913 0.8787 0.6948
0.0755 147.0002 25752 1.4690 0.8776 0.6931
0.08 148.0002 25926 1.2524 0.8842 0.7010
0.073 149.0002 26100 1.4146 0.8849 0.7005
0.0754 150.0002 26274 1.3797 0.8806 0.7009
0.0703 151.0002 26448 1.4607 0.8731 0.6912
0.0693 152.0002 26622 1.2254 0.8833 0.7042
0.0718 153.0002 26796 1.4364 0.8726 0.6913
0.0768 154.0001 26970 1.2333 0.8826 0.7142
0.0713 155.0001 27144 1.3738 0.8786 0.7012
0.0729 156.0001 27318 1.3060 0.8831 0.7057
0.0725 157.0001 27492 1.3991 0.8795 0.6936
0.0693 158.0001 27666 1.4688 0.8800 0.7071
0.0694 159.0001 27840 1.3043 0.8863 0.7083
0.0672 160.0001 28014 1.3511 0.8812 0.7073
0.0696 161.0001 28188 1.2976 0.8834 0.7030
0.0676 162.0001 28362 1.3276 0.8820 0.7002
0.0678 163.0001 28536 1.2867 0.8822 0.7045
0.0664 164.0001 28710 1.3584 0.8837 0.7090
0.0659 165.0001 28884 1.3738 0.8785 0.7029
0.0615 166.0001 29058 1.2903 0.8810 0.7045
0.0619 167.0001 29232 1.4785 0.8813 0.7062
0.0618 168.0000 29406 1.2958 0.8841 0.7064
0.0635 169.0000 29580 1.2425 0.8865 0.7103
0.065 170.0000 29754 1.3259 0.8875 0.7182
0.0635 171.0000 29928 1.4124 0.8812 0.7105
0.0617 172.0000 30102 1.3992 0.8831 0.7068
0.0618 173.0000 30276 1.4231 0.8825 0.7101
0.062 173.0013 30450 1.5441 0.8832 0.7027
0.0645 174.0013 30624 1.2789 0.8891 0.7191
0.0588 175.0013 30798 1.3923 0.8851 0.7036
0.0603 176.0013 30972 1.2946 0.8896 0.7177
0.0628 177.0013 31146 1.3610 0.8867 0.7143
0.0581 178.0013 31320 1.3410 0.8854 0.7121
0.057 179.0013 31494 1.3122 0.8895 0.7209
0.0586 180.0012 31668 1.5097 0.8839 0.7117
0.0625 181.0012 31842 1.4167 0.8847 0.7152
0.0563 182.0012 32016 1.1503 0.8925 0.7368
0.0609 183.0012 32190 1.1861 0.8900 0.7281
0.0582 184.0012 32364 1.2710 0.8894 0.7202
0.056 185.0012 32538 1.3732 0.8867 0.7167
0.0595 186.0012 32712 1.4251 0.8845 0.7144
0.0566 187.0012 32886 1.3183 0.8923 0.7213
0.0538 188.0012 33060 1.5077 0.8781 0.7138
0.0555 189.0012 33234 1.3157 0.8900 0.7201
0.0559 190.0012 33408 1.2063 0.8940 0.7299
0.0519 191.0012 33582 1.2676 0.8857 0.7239
0.0555 192.0012 33756 1.3803 0.8861 0.7147
0.0535 193.0012 33930 1.3908 0.8854 0.7259
0.0544 194.0011 34104 1.4638 0.8867 0.7217
0.0533 195.0011 34278 1.3818 0.8871 0.7271
0.0501 196.0011 34452 1.3062 0.8905 0.7247
0.0531 197.0011 34626 1.4616 0.8816 0.7163
0.0625 198.0011 34800 1.5393 0.8812 0.7069
0.0528 199.0011 34974 1.3661 0.8857 0.7184
0.0537 200.0011 35148 1.1742 0.8909 0.7270
0.0502 201.0011 35322 1.3423 0.8876 0.7256
0.0515 202.0011 35496 1.3618 0.8885 0.7228

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.1
Downloads last month
5
Safetensors
Model size
31.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support