metadata
base_model: nvidia/Llama-3.3-Nemotron-70B-Reward-Principle
base_model_relation: quantized
quantized_by: ArtusDev
license: other
license_name: nvidia-open-model-license
license_link: >-
https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/
inference: false
fine-tuning: false
language:
- en
tags:
- nvidia
- llama3.3
- exl3
datasets:
- nvidia/HelpSteer3
library_name: transformers
ArtusDev/nvidia_Llama-3.3-Nemotron-70B-Reward-Principle-EXL3
EXL3 quants of nvidia/Llama-3.3-Nemotron-70B-Reward-Principle using exllamav3 for quantization.
Quants
| Quant | BPW | Head Bits | Size (GB) |
|---|---|---|---|
| 2.5_H6 | 2.5 | 6 | 24.31 |
| 3.0_H6 | 3.0 | 6 | 28.60 |
| 3.5_H6 | 3.5 | 6 | 32.87 |
| 4.0_H6 | 4.0 | 6 | 37.15 |
| 4.25_H6 | 4.25 | 6 | 39.29 |
| 5.0_H6 | 5.0 | 6 | 45.71 |
| 6.0_H6 | 6.0 | 6 | 54.27 |
| 8.0_H8 | 8.0 | 8 | 71.64 |
How to Download and Use Quants
You can download quants by targeting specific size using the Hugging Face CLI.
Click for download commands
1. Install huggingface-cli:
pip install -U "huggingface_hub[cli]"
2. Download a specific quant:
huggingface-cli download ArtusDev/nvidia_Llama-3.3-Nemotron-70B-Reward-Principle-EXL3 --revision "5.0bpw_H6" --local-dir ./
EXL3 quants can be run with any inference client that supports EXL3, such as TabbyAPI. Refer to documentation for set up instructions.
Acknowledgements
Made possible with cloud compute from lium.io