|
from flask import Flask, request, jsonify, send_from_directory
|
|
import pandas as pd
|
|
import numpy as np
|
|
import joblib
|
|
import os
|
|
|
|
app = Flask(__name__)
|
|
|
|
|
|
model = joblib.load('mental_health_model_final.pkl')
|
|
scaler = joblib.load('scaler_final.pkl')
|
|
le_gender = joblib.load('le_gender_final.pkl')
|
|
le_target = joblib.load('le_target_final.pkl')
|
|
|
|
|
|
columns = ['Sentiment_Score', 'HRV', 'Sleep_Hours', 'Activity', 'Age', 'Gender', 'Work_Study_Hours']
|
|
print("Feature Importance:")
|
|
for feature, importance in zip(columns, model.feature_importances_):
|
|
print(f"{feature}: {importance:.4f}")
|
|
|
|
|
|
@app.route('/')
|
|
def serve_html():
|
|
return send_from_directory('.', 'index.html')
|
|
|
|
@app.route('/predict', methods=['POST'])
|
|
def predict():
|
|
try:
|
|
|
|
data = request.get_json()
|
|
|
|
|
|
columns = ['Sentiment_Score', 'HRV', 'Sleep_Hours', 'Activity', 'Age', 'Gender', 'Work_Study_Hours']
|
|
new_data = pd.DataFrame([data], columns=columns)
|
|
|
|
|
|
if new_data['Sleep_Hours'].iloc[0] < 0:
|
|
return jsonify({'error': 'Sleep_Hours cannot be negative'}), 400
|
|
if new_data['Work_Study_Hours'].iloc[0] < 0:
|
|
return jsonify({'error': 'Work_Study_Hours cannot be negative'}), 400
|
|
if new_data['Gender'].iloc[0] not in ['Male', 'Female']:
|
|
return jsonify({'error': 'Gender must be Male or Female'}), 400
|
|
|
|
|
|
new_data['Gender'] = le_gender.transform(new_data['Gender'])
|
|
new_data_scaled = scaler.transform(new_data)
|
|
|
|
|
|
prediction = model.predict(new_data_scaled)[0]
|
|
probs = model.predict_proba(new_data_scaled)[0]
|
|
health_status = {0: "Low", 1: "Moderate", 2: "High"}
|
|
result = health_status[prediction]
|
|
|
|
|
|
prob_dict = {health_status[i]: float(prob) for i, prob in enumerate(probs)}
|
|
|
|
|
|
max_prob = probs.max()
|
|
disclaimer = ""
|
|
if max_prob < 0.7:
|
|
disclaimer = "This prediction is uncertain (confidence below 70%). Please consult a professional for an accurate assessment."
|
|
|
|
|
|
if result == "Low":
|
|
chatbot_message = "It looks like you might be experiencing low mental health. Consider reaching out to a friend or professional for support."
|
|
elif result == "Moderate":
|
|
chatbot_message = "Your mental health seems moderate. Keep up with self-care practices, and consider talking to someone if you feel overwhelmed."
|
|
else:
|
|
chatbot_message = "Great news! Your mental health appears to be high. Keep maintaining your healthy habits!"
|
|
|
|
return jsonify({
|
|
'prediction': result,
|
|
'probabilities': prob_dict,
|
|
'disclaimer': disclaimer,
|
|
'model_accuracy': 'This model has a cross-validation accuracy of 76.8%.',
|
|
'chatbot_message': chatbot_message
|
|
})
|
|
except Exception as e:
|
|
return jsonify({'error': str(e)}), 400
|
|
|
|
@app.route('/feedback', methods=['POST'])
|
|
def feedback():
|
|
try:
|
|
feedback_data = request.get_json()
|
|
with open('feedback.log', 'a') as f:
|
|
f.write(f"Prediction: {feedback_data['prediction']}, Accurate: {feedback_data['accurate']}\n")
|
|
return jsonify({'message': 'Feedback received'})
|
|
except Exception as e:
|
|
return jsonify({'error': str(e)}), 400
|
|
|
|
if __name__ == '__main__':
|
|
app.run(debug=True, host='0.0.0.0', port=5000) |