metadata
license: mit
base_model: dslim/bert-base-NER
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: Products_NER
results: []
Products_NER
This model is a fine-tuned version of dslim/bert-base-NER on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0022
- Precision: 0.9991
- Recall: 0.9992
- F1: 0.9992
- Accuracy: 0.9996
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0051 | 1.0 | 2470 | 0.0035 | 0.9981 | 0.9986 | 0.9984 | 0.9992 |
0.0016 | 2.0 | 4940 | 0.0022 | 0.9991 | 0.9992 | 0.9992 | 0.9996 |
Framework versions
- Transformers 4.33.2
- Pytorch 1.13.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3