SentenceTransformer based on flax-sentence-embeddings/all_datasets_v4_MiniLM-L6

This is a sentence-transformers model finetuned from flax-sentence-embeddings/all_datasets_v4_MiniLM-L6. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("Auto-opts/flax-TMNRLB_CVR")
# Run inference
sentences = [
    'vitamin B12 for nerve health',
    'The Role of Magnesium in Muscle and Nerve Function',
    'Emerging Patterns in Roblox Code Distribution Channels',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 439,290 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 5 tokens
    • mean: 7.43 tokens
    • max: 15 tokens
    • min: 5 tokens
    • mean: 11.34 tokens
    • max: 34 tokens
    • min: 0.01
    • mean: 0.94
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    common UTI misconceptions How Antibiotics Like Fosfomycin Target Infections 1.0
    diuretics for swelling Venous Insufficiency and Its Impact on Leg Swelling 1.0
    pelvic floor exercises benefits Testosterone Levels and Their Impact on Erectile Health 1.0
  • Loss: main.DualThresholdEnforcedMNRL1

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 90
  • per_device_eval_batch_size: 90
  • num_train_epochs: 5
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 90
  • per_device_eval_batch_size: 90
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss
0.1024 500 2.4422
0.2049 1000 1.8481
0.3073 1500 1.5855
0.4098 2000 1.4325
0.5122 2500 1.332
0.6146 3000 1.2434
0.7171 3500 1.1842
0.8195 4000 1.1338
0.9219 4500 1.0779
1.0244 5000 1.0283
1.1268 5500 0.996
1.2293 6000 0.954
1.3317 6500 0.9362
1.4341 7000 0.895
1.5366 7500 0.8776
1.6390 8000 0.8624
1.7414 8500 0.8438
1.8439 9000 0.8158
1.9463 9500 0.7958
2.0488 10000 0.7779
2.1512 10500 0.754
2.2536 11000 0.7332
2.3561 11500 0.722
2.4585 12000 0.711
2.5610 12500 0.6945
2.6634 13000 0.6965
2.7658 13500 0.6834
2.8683 14000 0.6676
2.9707 14500 0.6635
3.0731 15000 0.6484
3.1756 15500 0.6282
3.2780 16000 0.6297
3.3805 16500 0.6241
3.4829 17000 0.6214
3.5853 17500 0.61
3.6878 18000 0.6106
3.7902 18500 0.6006
3.8926 19000 0.6062
3.9951 19500 0.6022
4.0975 20000 0.5808
4.2000 20500 0.5855
4.3024 21000 0.5852
4.4048 21500 0.5757
4.5073 22000 0.5768
4.6097 22500 0.5715
4.7121 23000 0.5764
4.8146 23500 0.5732
4.9170 24000 0.5777

Framework Versions

  • Python: 3.12.3
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.7.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
-
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Auto-opts/flax-TMNRLB_CVR

Finetuned
(5)
this model