pynb-73m-base
A 73M parameter language model trained for code generation with smolagents. Built on the Qwen2 architecture.
Model Details
| Property | Value |
|---|---|
| Parameters | 73.6M |
| Architecture | Qwen2ForCausalLM |
| Hidden size | 384 |
| Layers | 12 |
| Attention heads | 6 (2 KV heads, GQA 3:1) |
| Intermediate size | 768 |
| Context length | 2048 |
| Vocab size | 151,671 |
Training
Trained for 15,500 steps (~12 hours) on a single NVIDIA RTX 5070 Ti.
| Metric | Start | End |
|---|---|---|
| Train Loss | 12.0 | 2.4 |
| Val Loss | 6.5 | 2.6 |
Quick Start with smolagents
See inference_smolagent.py for full agent setup with LocalPythonExecutor and tools.
from inference_smolagent import create_agent, CalculatorTool, FibonacciTool
agent = create_agent(
model_id="AutomatedScientist/pynb-73m-base",
tools=[CalculatorTool(), FibonacciTool()],
max_steps=5,
)
result = agent.run("Calculate 15 * 7 + 23")
print(result)
Or with HuggingFace API model:
from smolagents import CodeAgent, HfApiModel
model = HfApiModel(model_id="AutomatedScientist/pynb-73m-base")
agent = CodeAgent(tools=[], model=model)
result = agent.run("Calculate the sum of numbers from 1 to 100")
print(result)
Local Inference
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "AutomatedScientist/pynb-73m-base" # or "checkpoint" for local
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto"
)
prompt = "Write a function to calculate fibonacci numbers"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=False))
Inference Script
See inference.py for a wrapper class:
from inference import CodeModel
model = CodeModel("AutomatedScientist/pynb-73m-base")
result = model.generate("Write a function to sort a list")
print(result)
Installation
pip install torch transformers smolagents
Limitations
- Small model (73M params) - limited reasoning capacity compared to larger models
- Context window limited to 2,048 tokens
- Best used with short prompts due to context constraints
License
Apache 2.0
Model tree for AutomatedScientist/pynb-73m-base
Base model
Qwen/Qwen2.5-0.5B