result-colab-with_tokenizer
This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3390
- Accuracy: 0.8945
- Precision: 0.8847
- Recall: 0.8927
- F1: 0.8869
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 12
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.2288 | 1.0 | 48 | 0.9276 | 0.6789 | 0.5929 | 0.6138 | 0.5825 |
0.7686 | 2.0 | 96 | 0.5879 | 0.7661 | 0.7354 | 0.7159 | 0.7019 |
0.5665 | 3.0 | 144 | 0.4706 | 0.8440 | 0.8498 | 0.8238 | 0.8281 |
0.4813 | 4.0 | 192 | 0.4045 | 0.8578 | 0.8514 | 0.8329 | 0.8354 |
0.3716 | 5.0 | 240 | 0.3770 | 0.8624 | 0.8566 | 0.8398 | 0.8426 |
0.3535 | 6.0 | 288 | 0.3538 | 0.8853 | 0.8760 | 0.8664 | 0.8690 |
0.2511 | 7.0 | 336 | 0.3626 | 0.8716 | 0.8631 | 0.8573 | 0.8591 |
0.2826 | 8.0 | 384 | 0.3490 | 0.8899 | 0.8809 | 0.8886 | 0.8823 |
0.2295 | 9.0 | 432 | 0.3372 | 0.8807 | 0.8697 | 0.8720 | 0.8705 |
0.181 | 10.0 | 480 | 0.3410 | 0.8853 | 0.8743 | 0.8789 | 0.8757 |
0.178 | 11.0 | 528 | 0.3416 | 0.8945 | 0.8847 | 0.8927 | 0.8869 |
0.208 | 12.0 | 576 | 0.3390 | 0.8945 | 0.8847 | 0.8927 | 0.8869 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for BDAIO/result-colab-with_tokenizer
Base model
google-bert/bert-base-multilingual-uncased