Transformers
English

wordpiece-tokenizer-32k-en_code-msp

A 'modern' uncased wordpiece tokenizer for MLM, analogous to bert-base-uncased's tokenizer.

  • 32k vocab size, uncased. Trained with max alphabet of 1000 and min_freq of 5
  • Unique WordPiece tokenizer that preserves whitespace information.
    • Done through witchcraft a combination of Metaspace() and custom grouping/filtering logic
  • trained on english/code via pints-ai/Expository-Prose-V1 to leverage ^

Usage

from transformers import AutoTokenizer

repo_id = "BEE-spoke-data/wordpiece-tokenizer-32k-en_code-msp"
tokenizer = AutoTokenizer.from_pretrained(repo_id)
# same usage as any other tokenizer for encoder models

Comparison vs bert-base-uncased

vocab

Click to see comparison code

Code to run the below comparison:

import random

from transformers import AutoTokenizer

tk_base = AutoTokenizer.from_pretrained("bert-base-uncased")
tk_retrained = AutoTokenizer.from_pretrained("BEE-spoke-data/wordpiece-tokenizer-32k-en_code-msp")

# Get vocabularies as sets
vocab_base = set(tk_base.get_vocab().keys())
vocab_retrained = set(tk_retrained.get_vocab().keys())

# Compare vocabularies
common_tokens = vocab_base.intersection(vocab_retrained)
unique_to_base = vocab_base.difference(vocab_retrained)
unique_to_retrained = vocab_retrained.difference(vocab_base)

# Print results
print(f"Total tokens in base tokenizer: {len(vocab_base)}")
print(f"Total tokens in retrained tokenizer: {len(vocab_retrained)}")
print(f"Number of common tokens: {len(common_tokens)}")
print(f"Tokens unique to base tokenizer: {len(unique_to_base)}")
print(f"Tokens unique to retrained tokenizer: {len(unique_to_retrained)}")

# Optionally print a few examples
print("\nExamples of common tokens:", random.sample(list(common_tokens), k=10))
print("\nExamples of tokens unique to base:", random.sample(list(unique_to_base), k=20))
print(
    "\nExamples of tokens unique to retrained:",
    random.sample(list(unique_to_retrained), k=20)
)
Total tokens in base tokenizer: 30522
Total tokens in retrained tokenizer: 31999
Number of common tokens: 19481
Tokens unique to base tokenizer: 11041
Tokens unique to retrained tokenizer: 12518

Examples of common tokens:
['mayo', 'halo', 'tad', 'isles', '##hy', 'molecular', '##43', '##へ', 'mike', 'reaction']

Examples of tokens unique to base:
['##ingdon', 'vikram', '##worm', '##mobile', 'saxophonist', 'azerbaijani', 'flared', 'picasso', 'modernized', 'brothel', '##cytes', '[unused933]', 'humming', 'pontiac', '##Ε‚a', 'wembley', '14th', '##runa', '##eum', 'εŠ‰']

Examples of tokens unique to retrained:
['discrimin', '##emporal', 'tabern', 'mund', '##jud', 'schrodinger', '##oscope', 'resp', '##imento', '▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁', 'caterpillar', '##374', '##endentry', 'undoubted', 'subpro', 'indispensable', '##ushed', '##sein', 'utterance', 'disambigu']

whitespace encoding

Let's say we want to tokenize the below class:

class DyT(nn.Module):
    def __init__(self, num_features, alpha_init_value=0.5):
        super().__init__()
        self.alpha = nn.Parameter(torch.ones(1) * alpha_init_value)
        self.weight = nn.Parameter(torch.ones(num_features))
        self.bias = nn.Parameter(torch.zeros(num_features))

    def forward(self, x):
        x = torch.tanh(self.alpha * x)
        return x * self.weight + self.bias

bert-base-uncased ignores the indentations for python, while our tokenizer does not:

image/png

this tokenizer:

image/png

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train BEE-spoke-data/wordpiece-tokenizer-32k-en_code-msp

Collection including BEE-spoke-data/wordpiece-tokenizer-32k-en_code-msp