tokenizers
Collection
trained and adapted tokenizers - various
•
19 items
•
Updated
A 'modern' uncased wordpiece tokenizer for MLM, analogous to bert-base-uncased
's tokenizer.
Metaspace()
and custom grouping/filtering logicpints-ai/Expository-Prose-V1
to leverage ^from transformers import AutoTokenizer
repo_id = "BEE-spoke-data/wordpiece-tokenizer-32k-en_code-msp"
tokenizer = AutoTokenizer.from_pretrained(repo_id)
# same usage as any other tokenizer for encoder models
Code to run the below comparison:
import random
from transformers import AutoTokenizer
tk_base = AutoTokenizer.from_pretrained("bert-base-uncased")
tk_retrained = AutoTokenizer.from_pretrained("BEE-spoke-data/wordpiece-tokenizer-32k-en_code-msp")
# Get vocabularies as sets
vocab_base = set(tk_base.get_vocab().keys())
vocab_retrained = set(tk_retrained.get_vocab().keys())
# Compare vocabularies
common_tokens = vocab_base.intersection(vocab_retrained)
unique_to_base = vocab_base.difference(vocab_retrained)
unique_to_retrained = vocab_retrained.difference(vocab_base)
# Print results
print(f"Total tokens in base tokenizer: {len(vocab_base)}")
print(f"Total tokens in retrained tokenizer: {len(vocab_retrained)}")
print(f"Number of common tokens: {len(common_tokens)}")
print(f"Tokens unique to base tokenizer: {len(unique_to_base)}")
print(f"Tokens unique to retrained tokenizer: {len(unique_to_retrained)}")
# Optionally print a few examples
print("\nExamples of common tokens:", random.sample(list(common_tokens), k=10))
print("\nExamples of tokens unique to base:", random.sample(list(unique_to_base), k=20))
print(
"\nExamples of tokens unique to retrained:",
random.sample(list(unique_to_retrained), k=20)
)
Total tokens in base tokenizer: 30522
Total tokens in retrained tokenizer: 31999
Number of common tokens: 6719
Tokens unique to base tokenizer: 23803
Tokens unique to retrained tokenizer: 25280
Examples of common tokens: ['1908', 'ロ', 'pa', 'jiang', '##ibly', '1966', '##>', 'wind', '##ried', '天']
Examples of tokens unique to base: ['[unused686]', '[unused146]', 'jr', 'groves', 'janeiro', '氵', '[unused768]', 'abusive', 'illustrated', 'veteran', 'blitz', 'audio', 'lafayette', 'mice', 'pedersen', 'bharatiya', 'kerman', 'computed', 'broker', 'late']
Examples of tokens unique to retrained: ['454', '▁traveller', '▁peaked', '▁outflow', '##ributions', '##发', '▁more', '▁simon', '▁pok', '▁pounds', '▁ventric', '▁psychological', '455', '▁vi', '##bits', '##tex', '▁wing', '▁want', '▁cleans', '▁fac']
TODO: update for latest version