Model card for BVRA/tf_efficientnetv2_b3.in1k_ft_fungitastic-mini_224
Model Details
- Model Type: Fine-grained classification of fungi species
- Model Stats:
- Params (M): 13.2
- Image size: 224 x 224
- Papers:
- Original: --> ???
- Train Dataset: FungiTastic --> https://arxiv.org/pdf/2408.13632
Model Usage
Image Embeddings
import timm
import torch
import torchvision.transforms as T
from PIL import Image
from urllib.request import urlopen
model = timm.create_model("hf-hub:BVRA/tf_efficientnetv2_b3.in1k_ft_fungitastic-mini_224", pretrained=True)
model = model.eval()
train_transforms = T.Compose([T.Resize((224, 224)),
T.ToTensor(),
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
img = Image.open(PATH_TO_YOUR_IMAGE)
output = model(train_transforms(img).unsqueeze(0))
# output is a (1, num_features) shaped tensor
Citation
@article{picek2024fungitastic,
title={FungiTastic: A multi-modal dataset and benchmark for image categorization},
author={Picek, Lukas and Janouskova, Klara and Sulc, Milan and Matas, Jiri},
journal={arXiv preprint arXiv:2408.13632},
year={2024}
}
@InProceedings{Picek_2022_WACV,
author = {Picek, Luk'a{s} and {S}ulc, Milan and Matas, Ji{r}{'\i} and Jeppesen, Thomas S. and Heilmann-Clausen, Jacob and L{e}ss{\o}e, Thomas and Fr{\o}slev, Tobias},
title = {Danish Fungi 2020 - Not Just Another Image Recognition Dataset},
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
month = {January},
year = {2022},
pages = {1525-1535}
}
@article{picek2022automatic,
title={Automatic Fungi Recognition: Deep Learning Meets Mycology},
author={Picek, Luk{'a}{{s}} and {{S}}ulc, Milan and Matas, Ji{{r}}{'\i} and Heilmann-Clausen, Jacob and Jeppesen, Thomas S and Lind, Emil},
journal={Sensors},
volume={22},
number={2},
pages={633},
year={2022},
publisher={Multidisciplinary Digital Publishing Institute}
}
- Downloads last month
- 9
Inference API (serverless) does not yet support FungiTastic Dataset models for this pipeline type.