my_xlm-roberta-large-finetuned-conlljob01
This model is a fine-tuned version of dslim/bert-base-NER on the conll2003job dataset. It achieves the following results on the evaluation set:
- Loss: 0.1690
- Precision: 0.9057
- Recall: 0.9187
- F1: 0.9122
- Accuracy: 0.9825
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0372 | 1.0 | 896 | 0.1439 | 0.8943 | 0.9184 | 0.9062 | 0.9816 |
0.0043 | 2.0 | 1792 | 0.1532 | 0.9047 | 0.9209 | 0.9127 | 0.9824 |
0.0019 | 3.0 | 2688 | 0.1652 | 0.9102 | 0.9186 | 0.9143 | 0.9828 |
0.0013 | 4.0 | 3584 | 0.1690 | 0.9057 | 0.9187 | 0.9122 | 0.9825 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for BahAdoR0101/my_xlm-roberta-large-finetuned-conlljob01
Base model
dslim/bert-base-NEREvaluation results
- Precision on conll2003jobtest set self-reported0.906
- Recall on conll2003jobtest set self-reported0.919
- F1 on conll2003jobtest set self-reported0.912
- Accuracy on conll2003jobtest set self-reported0.983