tradepulse-finbert-yiyanghkust-finbert-tone-20250707_125257

This model is a fine-tuned version of yiyanghkust/finbert-tone on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.5009
  • Accuracy: 0.1667
  • Precision: 0.3333
  • Recall: 0.1667
  • F1: 0.2222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 2 10.5580 0.1667 0.3333 0.1667 0.2222
No log 2.0 4 10.5380 0.1667 0.3333 0.1667 0.2222
No log 3.0 6 10.5009 0.1667 0.3333 0.1667 0.2222

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.7.1+cpu
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
110M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Bencode92/tradepulse-finbert-yiyanghkust-finbert-tone-20250707_125257

Finetuned
(18)
this model