plus_model

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2227
  • Eader: {'precision': 0.6527777777777778, 'recall': 0.6308724832214765, 'f1': 0.6416382252559727, 'number': 149}
  • Nswer: {'precision': 0.7374551971326165, 'recall': 0.7481818181818182, 'f1': 0.7427797833935018, 'number': 1100}
  • Uestion: {'precision': 0.7554833468724614, 'recall': 0.7604251839738349, 'f1': 0.7579462102689487, 'number': 1223}
  • Overall Precision: 0.7415
  • Overall Recall: 0.7472
  • Overall F1: 0.7443
  • Overall Accuracy: 0.8544

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Eader Nswer Uestion Overall Precision Overall Recall Overall F1 Overall Accuracy
0.1843 0.78 200 0.2061 {'precision': 0.6296296296296297, 'recall': 0.3422818791946309, 'f1': 0.4434782608695652, 'number': 149} {'precision': 0.6472906403940887, 'recall': 0.5972727272727273, 'f1': 0.6212765957446809, 'number': 1100} {'precision': 0.7054794520547946, 'recall': 0.6737530662305805, 'f1': 0.6892513592639062, 'number': 1223} 0.6767 0.6197 0.6470 0.7748
0.1356 1.56 400 0.1477 {'precision': 0.5701754385964912, 'recall': 0.436241610738255, 'f1': 0.49429657794676807, 'number': 149} {'precision': 0.6569148936170213, 'recall': 0.6736363636363636, 'f1': 0.6651705565529622, 'number': 1100} {'precision': 0.6554054054054054, 'recall': 0.713818479149632, 'f1': 0.6833659491193737, 'number': 1223} 0.6523 0.6792 0.6655 0.8189
0.102 2.33 600 0.1666 {'precision': 0.38974358974358975, 'recall': 0.5100671140939598, 'f1': 0.4418604651162791, 'number': 149} {'precision': 0.6898444647758463, 'recall': 0.6854545454545454, 'f1': 0.687642498860009, 'number': 1100} {'precision': 0.7024661893396977, 'recall': 0.7219950940310711, 'f1': 0.7120967741935483, 'number': 1223} 0.6731 0.6930 0.6829 0.8246
0.0836 3.11 800 0.1592 {'precision': 0.6307692307692307, 'recall': 0.5503355704697986, 'f1': 0.5878136200716846, 'number': 149} {'precision': 0.6595012897678418, 'recall': 0.6972727272727273, 'f1': 0.6778612461334512, 'number': 1100} {'precision': 0.7373653686826843, 'recall': 0.7277187244480785, 'f1': 0.7325102880658437, 'number': 1223} 0.6956 0.7035 0.6995 0.8436
0.0657 3.89 1000 0.1658 {'precision': 0.5869565217391305, 'recall': 0.5436241610738255, 'f1': 0.5644599303135888, 'number': 149} {'precision': 0.7464788732394366, 'recall': 0.7227272727272728, 'f1': 0.7344110854503464, 'number': 1100} {'precision': 0.7090620031796503, 'recall': 0.7293540474243663, 'f1': 0.7190648931882304, 'number': 1223} 0.7184 0.7152 0.7168 0.8457
0.0462 4.67 1200 0.1855 {'precision': 0.656, 'recall': 0.5503355704697986, 'f1': 0.5985401459854014, 'number': 149} {'precision': 0.6961038961038961, 'recall': 0.730909090909091, 'f1': 0.7130820399113083, 'number': 1100} {'precision': 0.7286392405063291, 'recall': 0.7530662305805397, 'f1': 0.7406513872135101, 'number': 1223} 0.7103 0.7310 0.7205 0.8427
0.0441 5.45 1400 0.1721 {'precision': 0.6538461538461539, 'recall': 0.5704697986577181, 'f1': 0.6093189964157705, 'number': 149} {'precision': 0.7275179856115108, 'recall': 0.7354545454545455, 'f1': 0.7314647377938518, 'number': 1100} {'precision': 0.7504065040650406, 'recall': 0.7547015535568274, 'f1': 0.7525479005299633, 'number': 1223} 0.7350 0.7350 0.7350 0.8555
0.0347 6.23 1600 0.2052 {'precision': 0.6312056737588653, 'recall': 0.5973154362416108, 'f1': 0.6137931034482759, 'number': 149} {'precision': 0.715929203539823, 'recall': 0.7354545454545455, 'f1': 0.7255605381165919, 'number': 1100} {'precision': 0.7475728155339806, 'recall': 0.7555192150449714, 'f1': 0.7515250101667346, 'number': 1223} 0.7268 0.7371 0.7319 0.8545
0.0294 7.0 1800 0.2374 {'precision': 0.6190476190476191, 'recall': 0.610738255033557, 'f1': 0.6148648648648649, 'number': 149} {'precision': 0.7442075996292864, 'recall': 0.73, 'f1': 0.7370353373106929, 'number': 1100} {'precision': 0.7593671940049959, 'recall': 0.7457072771872445, 'f1': 0.7524752475247525, 'number': 1223} 0.7441 0.7306 0.7373 0.8401
0.0239 7.78 2000 0.2227 {'precision': 0.647887323943662, 'recall': 0.6174496644295302, 'f1': 0.6323024054982819, 'number': 149} {'precision': 0.7139061116031886, 'recall': 0.7327272727272728, 'f1': 0.7231942575145804, 'number': 1100} {'precision': 0.7662229617304492, 'recall': 0.7530662305805397, 'f1': 0.7595876288659793, 'number': 1223} 0.7355 0.7358 0.7357 0.8472
0.0204 8.56 2200 0.2263 {'precision': 0.6375838926174496, 'recall': 0.6375838926174496, 'f1': 0.6375838926174496, 'number': 149} {'precision': 0.7371737173717372, 'recall': 0.7445454545454545, 'f1': 0.7408412483039349, 'number': 1100} {'precision': 0.7540453074433657, 'recall': 0.7620605069501226, 'f1': 0.7580317202114681, 'number': 1223} 0.7396 0.7468 0.7432 0.8539
0.0184 9.34 2400 0.2227 {'precision': 0.6527777777777778, 'recall': 0.6308724832214765, 'f1': 0.6416382252559727, 'number': 149} {'precision': 0.7374551971326165, 'recall': 0.7481818181818182, 'f1': 0.7427797833935018, 'number': 1100} {'precision': 0.7554833468724614, 'recall': 0.7604251839738349, 'f1': 0.7579462102689487, 'number': 1223} 0.7415 0.7472 0.7443 0.8544

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0.dev20230810
  • Datasets 2.14.4
  • Tokenizers 0.14.1
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BenjaminKUL/plus_model

Finetuned
(47)
this model